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Acoustic wave equation

∂tu +∇p = 0 in Ω× (0,T ),

∂tp + div u = 0 in Ω× (0,T ),

p = 0 on ∂Ω× (0,T ).

Remark (Existence and uniqueness)

Existence and uniqueness of a solution

(u, p) ∈ C([0,T ],H(div ,Ω)× H1
0 (Ω)) ∩ C1([0,T ], L2(Ω)2 × L2(Ω))

for suitable initial and right hand side data follows from the semigroup theory.
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Variational formulation

∂tu +∇p = 0 in Ω× (0,T ),

∂tp + div u = 0 in Ω× (0,T ),

p = 0 on ∂Ω× (0,T ).

Variational characterization

(∂tu(t), v)− (p(t), div v) = 0 ∀v ∈ H(div ,Ω)

(∂tp(t), q) + (div u(t), q) = 0 ∀q ∈ L2(Ω)

Remark
Each classical solution satisfies the variational characterization.

Remark
The spaces corresponding to the weak formulation are L2(Ω) for p and
H(div ,Ω) for u.
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Discrete spaces

Vh = BDM1 := P2
1(Th) ∩ H(div ,Ω) Qh = P0 := P0(Th) div Vh = Qh

Projection operators ρh : H1(Th) ∩ H(div ,Ω)→ Vh and π0
h : L2(Ω)→ Qh

div ρhv = π0
hdiv v

‖u − ρhu‖L2(Ω) ≤ Ch2|u|2,Ω,

‖p − π0
hp‖L2(Ω) ≤ Ch|p|1,Ω.
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Semi-discretization

Problem
For (uh(0), ph(0)) = (ρhu0, π

0
hp0) and all t > 0 find (uh(t), ph(t)) ∈ Vh ×Qh

such that

(∂tuh(t), vh)− (ph(t), div vh) = 0 ∀vh ∈ Vh,

(∂tph(t), qh) + (div uh(t), qh) = 0 ∀qh ∈ Qh.

Theorem (Error estimate for the semi-discretization)

Let Vh = BDM1, Qh = P0. Then if (u, p) sufficiently smooth

‖u(t)− uh(t)‖L2(Ω) + ‖p(t)− ph(t)‖L2(Ω) ≤ C(u, p)h.
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Motivation for new method

(∂tuh(t), vh)− (ph(t), div vh) = 0

(f (t), vh)

∀vh ∈ Vh,

(∂tph(t), qh) + (div uh(t), qh) = 0

(g(t), qh)

∀qh ∈ Qh.

Lemma (Discrete energy estimate)

Let (uh, ph) denote the solution of the system above. Then

‖uh(t)‖L2(Ω) + ‖ph(t)‖L2(Ω)

. ‖uh(0)‖L2(Ω) + ‖ph(0)‖L2(Ω)

+

∫ t

0
‖f (s)‖L2(Ω) + ‖g(s)‖L2(Ω)ds

Proof idea : Test equations with qh = ph(t) and vh = uh(t).
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Taking a step back ...

Consider the elliptic projection

(wh, vh)− (rh, div vh) = (w , vh)− (r , div vh) ∀vh ∈ Vh,

(div wh, qh) = (div w , qh) ∀qh ∈ Qh.
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Lemma (Estimates for the elliptic projection)

If Ω is convex, we have

‖π0
hr − rh‖L2(Ω) ≤ Ch2(‖w‖H1(Ω) + ‖div w‖H1(Ω)

)
.

whenever w and r are sufficiently smooth.

Vague idea : Duality arguments and

|(uh, vh)− (uh, vh)h| ≤

{
Ch‖uh‖H1(Ω)‖vh‖L2(Ω)

Ch2‖uh‖H1(Ω)‖vh‖H1(Ω)

M. Wheeler and I. Yotov.
A multipoint flux mixed finite element method.
SIAM J. Numer. Anal., Vol. 44, No. 5, pp. 2082–2106.
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Auxiliary functions

Consider the functions u∗h ∈ C1(0,T ; Vh) and p∗h ∈ C(0,T ; Qh) satisfying

(∂tu∗h (t), vh)h − (p∗h (t), div vh) = (∂tu(t), vh)− (p(t), div vh) ∀vh ∈ Vh

(div ∂tu∗h (t), qh) = (div ∂tu(t), qh) ∀qh ∈ Qh
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Lemma (Approximation error estimates)

We have

(div u∗h (t)− div u(t), qh) = 0, ∀qh ∈ Qh

Moreover, if Ω is convex, we have

‖π0
hp(t)− p∗h (t)‖L2(Ω) ≤ Ch2(‖∂tu(t)‖H1(Ω) + ‖div ∂tu(t)‖H1(Ω)

)
whenever u is sufficiently smooth.
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Motivation for new method

(∂tuh(t), vh)h − (ph(t), div vh) = 0 ∀vh ∈ Vh,

(∂tph(t), qh) + (div uh(t), qh) = 0 ∀qh ∈ Qh.

Theorem (Error estimate for the semi-discretization)

‖ρhu(t)− uh(t)‖L2(Ω) + ‖π0
hp(t)− ph(t)‖L2(Ω) ≤ C(u, p)h

For wh(t) = ρhu(t)− uh(t) and rh(t) = π0
hp(t)− ph(t), we have

(∂twh(t), vh)h − (rh(t), div vh) = (̃f (t), vh)

(∂t rh(t), qh) + (div wh(t), qh) = (g̃(t), qh)

with initial values wh(0) = 0, rh(0) = 0 and right hand sides
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(g̃(t), qh) = 0
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A new method
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Post-processing for the pressure

Idea : Construct p̃h ∈ P1(Th) from uh, ph. Testing the momentum equation
with ∇q ∈ L2(Ω)2 gives

(∇p,∇q)K = −(∂tu,∇q)K .

Problem
For all K ∈ Th, t > 0 find p̃h(t) ∈ P1(K ) such that

(∇p̃h(t),∇q̃h)K = −(∂tuh(t),∇q̃h)K ∀q̃h ∈ P1(K )

(p̃h(t), qh)K = (ph(t), qh)K ∀qh ∈ P0(K ),

R. Stenberg Postprocessing schemes for some mixed finite elements.
RAIRO Model. Math. Anal. Numer. 1991

Y. Chen Global superconvergence for a mixed finite element method for
the wave equation. Systems Sci. Math. Sci. 1999
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Post-Processing for the pressure

Theorem
For (p, u) sufficiently smooth, we have

‖p(t)− p̃h(t)‖L2(Ω) ≤ C(p, u)h2

We split the error

‖p − p̃h‖L2(K ) ≤ ‖p − π1p‖L2(K ) + ‖π0(π1p − p̃h)‖L2(K ) + ‖(Id− π0)(π1p − p̃h)‖L2(K ).

≤ ‖p − π1p‖L2(K ) + ‖π0p − ph‖L2(K ) + hK‖∇(π1p − p̃h)‖L2(K ).

We compute

(∇(π1p − p̃h),∇q̃h)K = (∇(π1p − p),∇q̃h)K + (∇(p − p̃h),∇q̃h)K

= (∇(π1p − p),∇q̃h)K − (∂t (u − uh),∇q̃h)K

≤
(
‖∇(π1p − p)‖L2(K ) + ‖∂t (u − uh)‖L2(K )

)
‖∇q̃h‖L2(K ).
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Auxiliary functions

Consider the functions u∗h ∈ C1(0,T ; Vh) and p∗h ∈ C(0,T ; Qh) satisfying

(∂tu∗h (t), vh)h − (p∗h (t), div vh) = 0 ∀vh ∈ Vh

(div ∂tu∗h (t), qh) = (div ∂tu(t), qh) ∀qh ∈ Qh

and

(u∗h (0), vh)h − (r∗h (0), div vh) = (u(0), vh) ∀vh ∈ Vh

(div u∗h (0), qh) = (div u(0), qh) ∀qh ∈ Qh

Lemma (Approximation error estimates)

We have

(div u∗h (t)− div u(t), qh) = 0, ∀qh ∈ Qh

Moreover, if Ω is convex, we have

‖π0
hp(t)− p∗h (t)‖L2(Ω) ≤ Ch2(‖∂tu(t)‖H1(Ω) + ‖div ∂tu(t)‖H1(Ω)

)
whenever u is sufficiently smooth.



Auxiliary functions

Consider the functions ũ∗h ∈ C1(0,T ; Vh) and p̃∗h ∈ C(0,T ; Qh) satisfying

(∂t ũ∗h (t), vh)− (p̃∗h (t), div vh) = 0 ∀vh ∈ Vh

(div ∂t ũ∗h (t), qh) = (div ∂tu(t), qh) ∀qh ∈ Qh

and

(ũ∗h (0), vh)− (̃r∗h (0), div vh) = (u(0), vh) ∀vh ∈ Vh

(div ũ∗h (0), qh) = (div u(0), qh) ∀qh ∈ Qh

Lemma (Approximation error estimates)

We have

(div ũ ∗h (t)− div u(t), qh) = 0, ∀qh ∈ Qh

Moreover, we get

‖u(t)− ũ ∗h (t)‖ ≤ C(u)h2

whenever u is sufficiently smooth.



Post-processing for the velocity

First try :

(ũh(t), vh) = (uh(t), vh)h ∀vh ∈ Vh

‖u(t)− ũh(t)‖L2 ≤

O(h2)︷ ︸︸ ︷
‖u(t)− π0

1u(t)‖L2 +

O(h3/2)︷ ︸︸ ︷
‖π0

1u(t)− ũh(t)‖L2 ≤ C(u)h3/2 ?

Second try :

(ũh(t), vh)− (̃rh(t), div vh) = (uh(t), vh)h ∀vh ∈ Vh,

(div ũh(t), qh) = (div uh(t), qh) ∀qh ∈ Qh.

‖u(t)− ũh(t)‖L2 ≤

O(h2)︷ ︸︸ ︷
‖u(t)− π0

1u(t)‖L2 +

O(h2)︷ ︸︸ ︷
‖π0

1u(t)− ũh(t)‖L2 ≤ C(u)h2
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Post-processing for the velocity

Problem (Post-processing strategy for the velocity)

For every 0 ≤ t ≤ T , find ũh(t) ∈ Vh such that

(ũh(t), vh)− (̃rh(t), div vh) = (uh(t), vh)h ∀vh ∈ Vh,

(div ũh(t), qh) = (div uh(t), qh) ∀qh ∈ Qh.

Theorem (Error estimate for the improved velocity)

Let Ω be convex. Then

‖u(t)− ũh(t)‖L2(Ω) ≤ C(u)h2
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Post-processing for the velocity

Proof:
Post-processing scheme at t = 0

(ũh(0), vh)− (̃rh(0), div vh) = (uh(0), vh)h ∀vh ∈ Vh,

(div ũh(0), qh) = (div uh(0), qh) ∀qh ∈ Qh.

Exact elliptic projection for the initial conditions

(ũ∗h (0), vh)− (̃r∗h (0), div vh) = (u(0), vh) ∀vh ∈ Vh

(div ũ∗h (0), qh) = (div u(0), qh) ∀qh ∈ Qh

Inexact elliptic projection for the initial conditions

(u∗h (0), vh)h − (r∗h (0), div vh) = (u(0), vh) ∀vh ∈ Vh

(div u∗h (0), qh) = (div u(0), qh) ∀qh ∈ Qh



Post-processing for the velocity

Proof:

(i) = (ũh(0), vh)− (̃rh(0), div vh) = (uh(0), vh)h

(ii) = (ũ∗h (0), vh)− (̃r∗h (0), div vh) = (u(0), vh)

(iii) = (u∗h (0), vh)h − (r∗h (0), div vh) = (u(0), vh)

Computing (ii)− (i)− (iii) and using uh(0) = u∗h (0) yields

(ũ ∗h (0)− ũh(0), vh) = (̃r ∗h (0)− r̃h(0)− r∗h (0), div vh)

This means

(ũ ∗h (0)− ũh(0), vh) = 0 ∀vh ∈ Vh with div vh = 0



Post-processing for the velocity

Proof:
(ũ ∗h (0)− ũh(0), vh) = 0 ∀vh ∈ Vh with div vh = 0

Post-processing scheme

(∂t ũh(t), vh)− (∂t r̃h(t), div vh) = (∂tuh(t), vh)h ∀vh ∈ Vh

(div ∂t ũh(t), qh) = (div ∂tuh(t), qh) ∀qh ∈ Qh

Exact elliptic projection

(∂t ũ∗h (t), vh)− (p̃∗h (t), div vh) = 0 ∀vh ∈ Vh

(div ∂t ũ∗h (t), qh) = (div ∂tu(t), qh) ∀qh ∈ Qh

Inexact elliptic projection

(∂tu∗h (t), vh)h − (p∗h (t), div vh) = 0 ∀vh ∈ Vh

(div ∂tu∗h (t), qh) = (div ∂tu(t), qh) ∀qh ∈ Qh



Post-processing for the velocity

Proof:
(ũ ∗h (0)− ũh(0), vh) = 0 ∀vh ∈ Vh with div vh = 0

(i) = (∂t ũh(t), vh)− (∂t r̃h(t), div vh) = (∂tuh(t), vh)h

(ii) = (∂t ũ∗h (t), vh)− (p̃∗h (t), div vh) = 0

(iii) = (∂tu∗h (t), vh)h − (p∗h (t), div vh) = 0

Computing (ii)− (i)− (iii) and using ∂tuh(0) = ∂tu∗h (0) yields

(∂t ũ ∗h (t)− ∂t ũh(t), vh) = (p̃ ∗h (t)− ph(t)− ∂t r̃h(t), div vh)

This means

(∂t ũ ∗h (t)− ∂t ũh(t), vh) = 0 ∀vh ∈ Vh with div vh = 0



Post-processing for the velocity

Proof:
(ũ ∗h (0)− ũh(0), vh) = 0 ∀vh ∈ Vh with div vh = 0

(∂t ũ ∗h (t)− ∂t ũh(t), vh) = 0 ∀vh ∈ Vh with div vh = 0



Post-processing for the velocity

Proof:
(ũ ∗h (t)− ũh(t), vh) = 0 ∀vh ∈ Vh with div vh = 0

Divergence condition of the post-processing scheme

(div ũh(t), qh) = (div uh(t), qh) ∀qh ∈ Qh

Property of the inexact elliptic projection

(div ũ∗h (t), qh) = (div u(t), qh) ∀qh ∈ Qh

Property of the exact elliptic projection

(div u∗h (t), qh) = (div u(t), qh) ∀qh ∈ Qh



Post-processing for the velocity

Proof:
(ũ ∗h (t)− ũh(t), vh) = 0 ∀vh ∈ Vh with div vh = 0

Divergence condition of the post-processing scheme

(div ũh(t), qh) = (div uh(t), qh) ∀qh ∈ Qh

Property of the inexact elliptic projection

(div ũ∗h (t), qh) = (div u(t), qh) ∀qh ∈ Qh

Property of the exact elliptic projection

(div u∗h (t), qh) = (div u(t), qh) ∀qh ∈ Qh



Post-processing for the velocity

Proof:
(ũ ∗h (t)− ũh(t), vh) = 0 ∀vh ∈ Vh with div vh = 0

Divergence condition of the post-processing scheme

(i) = (div ũh(t), qh) = (div uh(t), qh)

(ii) = (div ũ∗h (t), qh) = (div u(t), qh)

(iii) = (div u∗h (t), qh) = (div u(t), qh)

Computing (ii)− (i)− (iii) yields

(div (ũ ∗h (t)− ũh(t) + uh(t)− u∗h (t)), qh) = 0 ∀qh ∈ Qh



Post-processing for the velocity

Proof:
(ũ ∗h (t)− ũh(t), vh) = 0 ∀vh ∈ Vh with div vh = 0

(div (ũ ∗h (t)− ũh(t) + uh(t)− u∗h (t)), qh) = 0 ∀qh ∈ Qh

Actual start of the proof:
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L2(Ω) = (ũ ∗h (t)− ũh(t), ũ ∗h (t)− ũh(t) + uh(t)− u∗h (t))Ω
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Post-processing

Problem
For (uh(0), ph(0)) = (ρhu0, π

0
hp0) and all t > 0 find (uh(t), ph(t)) ∈ Vh ×Qh

such that

(∂tuh(t), vh)h − (ph(t), div vh) = 0 ∀vh ∈ Vh,

(∂tph(t), qh) + (div uh(t), qh) = 0 ∀qh ∈ Qh.

Theorem (Error estimate for the semi-discretization)

Let Vh = BDM1, Qh = P0. Then if (u, p) sufficiently smooth

‖u(t)− uh(t)‖L2(Ω) + ‖p(t)− ph(t)‖L2(Ω) ≤ C(u, p)h.

Theorem (Full post-processing error)

Let Vh = BDM1, Qh = P0. Then if (u, p) sufficiently smooth

‖u(t)− ũh(t)‖L2(Ω) + ‖p(t)− p̃h(t)‖L2(Ω) ≤ C(u, p)h2.



The fully discrete scheme

Problem (Fully discrete problem)

Set u 0
h = u∗h (0) and p 0

h = p∗h (0) and define u−1/2
h ∈ Vh as solution of

(u−1/2
h , vh)h = (u0

h , vh)h −
τ

2
(p0

h, div vh) ∀vh ∈ Vh. (1)

Then for n ≥ 0 find (un+1/2
h , pn+1

h ) ∈ Vh ×Qh, such that

(
un+1/2

h − un−1/2
h

τ
, vh)h − (pn

h , div vh) = 0 ∀vh ∈ Vh. (2)

(
pn+1

h − pn
h

τ
, qh) + (div un+1/2

h , qh) = 0 ∀qh ∈ Qh. (3)



Fully discrete results

Theorem (Estimates for the discrete error)

Let Ω be convex. Then, if the CFL condition is satisfied

‖û n
h − û ∗h (tn)‖L2(Ω) + ‖pn

h − p̂ ∗h (tn)‖L2(Ω) ≤ C(u)(h2 + τ 2)

for all 0 ≤ n ≤ N − 1. In addition, we also have

‖pn
h − π0

hp(tn)‖L2(Ω) ≤ C(u)(h2 + τ 2).
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Let Vh = BDM1, Qh = P0. Then if (u, p) sufficiently smooth
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h ‖L2(Ω) + ‖p(tn)− p̃ n

h ‖L2(Ω) ≤ C(u, p)(h2 + τ 2).



Remarks

I Extension to the a fully discrete scheme
I Only for lowest order Qh = P0 and Vh = BDM1

I The convexity condition is sufficient.
I We require quasi-uniformity of the triangulation Th.
I Can compete with FDTD, does not require uniform grid.



Numerical results
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2
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(
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√
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))(cos(πx) sin(πy)

sin(πx) cos(πy)
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hp(0)

(·, ·) u0
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‖p(tn)− p̃ n
h ‖L2(Ω) O(h2)
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