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Maxwell’s equations

Application. Electromagnetic wave propagation in
linear and non-dispersive but possibly inhomoge-
neous and anisotropic media

ε∂tE (t) = curl H(t)− σE (t)

µ∂tH(t) = −curl E (t)

ε = 1

ε = 2

in Ω, t > 0 with E (0) = 0 in Ω and n × E (t) = 0 on ∂Ω

Goal: systematic and flexible space discretization

I stable: no artificial energy production

I accurate: provable convergence rates

I efficient: appropriate for explicit time-stepping methods

Methods: FDTD/FIT, FVM, FEM, DG, . . .
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Galerkin approximation

Approximation spaces: Vh ⊂ H0(curl; Ω) and Qh ⊂ L2(Ω)

Galerkin method: For t > 0, tind Eh(t) ∈ Vh and Hh(t) ∈ Qh such that

(ε∂tEh(t), vh)Ω − (Hh(t), curl vh)Ω = 0

(µ∂tHh(t), qh)Ω + (curl Eh(t), qh)Ω = 0

for all test functions vh ∈ Vh and qh ∈ Qh, and for all t > 0

Algebraic realization.

Mε∂te(t)− C>h(t) = 0

Dµ∂th(t) + C e(t) = 0
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Mixed finite element approximation

Finite element spaces on reference elements.

Vh(Q̂) = N I
0 (Q̂)

Qh(Q̂) = P0(Q̂)

φ1 = (1− y , 0) φ3 = (0, 1− x)
φ2 = (y , 0) φ4 = (0, x)

Vh(T̂ ) = N I
0 (T̂ )

Qh(T̂ ) = P0(T̂ )

φ1 = (1− y , x) φ3 = (y , 1− x)
φ2 = (−y , x)

Note: Construction for “physical” elements Q or T by Piola-transform

Lemma (accuracy) [EggerRadu’18,DupontKeenan’98,LiBank’18].
If E and H are sufficiently smooth. Then

‖E (t)− Eh(t)‖+ ‖H(t)− Hh(t)‖ ≤ Ch

By duality argument, one can show super-convergence (ONLY 2D)

‖Π0
hH(t)− Hh(t)‖ ≤ Ch2
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Mixed finite element approximation

Stability and accuracy.
Lowest order MFEM yields stable and accurate approximation in space.

Numerical solution. Time integration of resulting ode system

Mε∂te(t)− C>h(t) = 0

Dµ∂th(t) + C e(t) = 0

by explicit schemes requires application of M−1
ε and D−1

µ .

Note. Here Dµ diagonal, but Mε does not have a sparse inverse!
Thus, explicit time-stepping for standard MFEM is not efficient.

Remedy – Mass-lumping: replace Mε by approximation ML
ε such that

I ML
ε corresponds to positive definite matrix (stability)

I ML
ε is good approximation for Mε (accuracy)

I (ML
ε )−1 can be applied efficiently (efficiency)

construction of ML
ε usually via numerical quadrature; see [Cohen’02].
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Proposed solutions

Extended finite element space.

Add additional interior basis functions [ElmkiesJoly’93].

Vh(Q̂) = N I
0 (Q̂)⊕ B = EJ1(Q̂)

Qh(Q̂) = P1(Q̂)

Vh(T̂ ) = N I
0 (T̂ )⊕ B = EJ1(Q̂)

Qh(T̂ ) = P1(T̂ )

Numerical Integration
Use the midpoint rule, which is exact for P2 functions.
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A different solution

Another choice of finite elements

Ṽh(Q̂) = N II
1 (Q̂)

Qh(Q̂) = P0(Q̂)

Ṽh(T̂ ) = N II
1 (T̂ )

Qh(T̂ ) = P0(T̂ )

Lemma [WheelerYotov’06]. M̃L
ε is block diagonal and thus also (M̃L

ε )−1.
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Qh(Q̂) = P0(Q̂)

Ṽh(T̂ ) = N II
1 (T̂ )

Qh(T̂ ) = P0(T̂ )

Lemma (accuracy)
If E and H are sufficiently smooth. Then

‖E (t)− Eh(t)‖+ ‖H(t)− Hh(t)‖ ≤ Ch

Moreover, ‖Π0
hH(t)− Hh(t)‖ ≤ Ch2 and for a special projection Π̂h

‖Π̂hE (t)− Eh(t)‖ ≤ Ch2
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Idea why

Recall the lumped Galerkin discretization

(ε∂tEh(t), vh)h − (Hh(t), curl vh)Ω = 0

(µ∂tHh(t), qh)Ω + (curl Eh(t), qh)Ω = 0

Use the elliptic projection

(Π̂hε∂tE (t), vh)h − (π̂hH(t), curl vh) = 0 ∀vh ∈ Vh,

(curl Π̂h∂tE (t), qh) = (curl ∂tE (t), qh) ∀qh ∈ Qh.
Then, we have

(ε∂tEh(t)− Π̂hε∂tE (t), vh)h − (Hh(t)− π̂hH(t), curl vh)Ω = 0

(µ∂tHh(t)− π̂hµH(t), qh)Ω + (curl (Eh(t)− Π̂hE (t)), qh)Ω =

= (µ∂tHh(t)− Π̂0
hµH(t), qh)Ω

With this, we can devise a non-local post-processing strategy for E
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Embedding quadrature

Idea. Use lowest order space Vh to represent solution, compute update
in enriched space Ṽh, and then project back to Vh

P>

P

P>

P

Formal representation of inverse mass matrix.

(ML
ε )−1 = P (M̃L

ε ) P>

Lemma [EggerRadu’18].

‖E (t)− Eh(t)‖+ ‖H(t)− Hh(t)‖ ≤ Ch

and superconvergence

‖Π0
hH(t)− Hh(t)‖ ≤ Ch2 and ‖ΠhE (t)− Eh(t)‖ ≤ chγ

with γ = 2 on regular and 3/2 ≤ γ ≤ 2 on uniformly refined meshes
Moreover, method equivalent to FDTD/FIT on rectangular grids!
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in enriched space Ṽh, and then project back to Vh

P>

P

P>

P

Formal representation of inverse mass matrix.

(ML
ε )−1 = P (M̃L

ε ) P>

Lemma [EggerRadu’18].

‖E (t)− Eh(t)‖+ ‖H(t)− Hh(t)‖ ≤ Ch

and superconvergence

‖Π0
hH(t)− Hh(t)‖ ≤ Ch2 and ‖ΠhE (t)− Eh(t)‖ ≤ chγ

with γ = 2 on regular and 3/2 ≤ γ ≤ 2 on uniformly refined meshes
Moreover, method equivalent to FDTD/FIT on rectangular grids!

9 / 15



Higher order

For first order elements, the quadrature formula was exact for
Vh × P0 ⊆ P2. Intuition suggests that for higher order elements, it should
be exact for Vh × P1. We show that it is possible to relax this condition.

Recall the elliptic projection

(Π̂hE (t), vh)h − (π̂hHh(t), curl vh) = 0 ∀vh ∈ Vh,
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Higher Order

Recall the elliptic projection

(Π̂hE (t), vh)h − (π̂hHh(t), curl vh) = 0 ∀vh ∈ Vh,

(curl Π̂hE (t), qh) = (curlE (t), qh) ∀qh ∈ Qh.
Lemma [EggerRadu’18].

‖E (t)− Eh(t)‖+ ‖Π0
hH(t)− Hh(t)‖ ≤ Ch2

and, under elliptic regularity

‖Π0
hH(t)− Hh(t)‖ ≤ Ch3

Remark. This result also holds for Maxwells equations.
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Comparison

CFL condition

CFL Number

N II
1 -P0 (N I

1 -P0) 0.288
EJ1-P1 0.131

N I
2 -P1 0.094

EJ2-P+
2 0.039

CPU Runtime

h 2−1 2−2 2−3 2−4 2−5

N II
1 -P0 0.0590 0.0704 0.1785 0.6780 2.6101

EJ1-P1 0.1032 0.1837 0.6682 2.4143 9.9358

N I
2 -P1 0.1065 0.1965 0.7327 2.8115 11.4102

EJ2-P+
2 0.3103 0.8093 3.4265 19.4949 86.3967

Table: Duration of 10000 time steps in seconds for lumped methods. Leap-frog
with pre-computed inverse of the mass matrix.
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Even higher orders
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Further results and open problems

Simulation on unstructured mesh
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Further results and open problems

Simulation on unstructured mesh

Further results and current research

I similar results for tetrahedra, hexahedra, prisms

I quadrature rules and mass lumping for higher order approximations

I local post-processing schemes yielding h2 full convergence
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Simulation on unstructured mesh

Further results and current research
I similar results for tetrahedra, hexahedra, prisms
I quadrature rules and mass lumping for higher order approximations
I local post-processing schemes yielding h2 full convergence

Further reseearch directions
I complete error analysis for uniformly refined unstructured grids
I finite elements, quadrature rules, and mass lumping for pyramids
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