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Maxwell's equations

Application. Electromagnetic wave propagation in
linear and non-dispersive but possibly inhomoge-
neous and anisotropic media

€0:E(t) = curl H(t) — o E(t)
uOrH(t) = —curl E(t)

in Q, t >0 with E(0) =0in Q and n x E(t) =0 on 0Q

Goal: systematic and flexible space discretization
> stable: no artificial energy production
> accurate: provable convergence rates

> efficient: appropriate for explicit time-stepping methods

Methods: FDTD/FIT, FVM, FEM, DG, ...
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Galerkin approximation

Approximation spaces: Vj, C Ho(curl; Q) and Q, C L?(Q)
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Approximation spaces: Vj, C Ho(curl; Q) and Q, C L?(Q)
Galerkin method: For t > 0, tind Ex(t) € V}, and Hp(t) € Qp such that

(6({91_»Eh(t')7 Vh)Q — (Hh(f), curl V/-,)Q =0
(10eHy(t), gn)a + (curl Ex(t), gn)a =0

for all test functions v, € V}, and g, € Qp, and for all t > 0
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Galerkin approximation

Approximation spaces: Vj, C Ho(curl; Q) and Q, C L?(Q)
Galerkin method: For t > 0, tind Ex(t) € V}, and Hp(t) € Qp such that

(6({91_»Eh(t')7 Vh)Q — (Hh(f), curl V/-,)Q =0
(10eHy(t), an)a + (curl Ex(t), gn)a =0

for all test functions v, € V}, and g, € Qp, and for all t > 0
Algebraic realization.

M.0.e(t) — CTh(t)
D,.0:h(t) + Ce(t) =

0
0
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Mixed finite element approximation

Finite element spaces on reference elements.

T o I Vi(Q) =M(Q)  ¢1=(1-y,0) ¢5=(0,1-x)
Q) =

Qh( ) PO(@) ¢2 = ()/70) ¢4 = (va)
—
] N\ V(D =AUT)  di=(1-y.x) ds=(y.1-x)
° Qn(T) = Po(T) ¢2 = (—y,x)
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Mixed finite element approximation

Finite element spaces on reference elements.

—

T o I Vi(Q) =M(Q)  ¢1=(1-y,0) ¢5=(0,1-x)
Qn(Q) = Po(Q) $2 = (v,0) ¢a = (0, x)

—

T \ Vh(i):Nolf) pr=(1-y,x) ¢3=(y,1-x)

O (D =R(T) b= (rx)

—

Note: Construction for “physical” elements Q or T by Piola-transform
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Mixed finite element approximation

Finite element spaces on reference elements.
—

T o T Vi(Q) =M(Q)  ¢1=(1-y,0) ¢5=(0,1-x)
Qn(Q) = Po(Q) b2 = (y,0) ¢4 = (0,x)

]\ V(D =AUT)  di=(1-y.x) ds=(y.1-x)
O D =R(T) = (yx)

Note: Construction for “physical” elements Q or T by Piola-transform

Lemma (accuracy) [EggerRadu’18,DupontKeenan’98,LiBank’18].
If E and H are sufficiently smooth. Then

IE(t) = En(t)]| + | H(t) = Ha(t)| < Ch
By duality argument, one can show super-convergence (ONLY 2D)
IMRH(E) — Ha(t)]| < Ch°
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Mixed finite element approximation

Stability and accuracy.
Lowest order MFEM yields stable and accurate approximation in space.
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Stability and accuracy.
Lowest order MFEM yields stable and accurate approximation in space.

Numerical solution. Time integration of resulting ode system

M.0.e(t) — CTh(t) =0
D,o:h(t)+Ce(t) =0

by explicit schemes requires application of M_' and D, *.

5/15



Mixed finite element approximation

Stability and accuracy.
Lowest order MFEM yields stable and accurate approximation in space.
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M.0.e(t) — CTh(t) =0
D,o:h(t)+Ce(t) =0

by explicit schemes requires application of M_' and D, *.

Note. Here D, diagonal, but M. does not have a sparse inverse!
Thus, explicit time-stepping for standard MFEM is not efficient.
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Mixed finite element approximation

Stability and accuracy.
Lowest order MFEM yields stable and accurate approximation in space.

Numerical solution. Time integration of resulting ode system

M.0.e(t) — CTh(t) =0
D,o:h(t)+Ce(t) =0

by explicit schemes requires application of M_' and D, *.

Note. Here D, diagonal, but M. does not have a sparse inverse!
Thus, explicit time-stepping for standard MFEM is not efficient.

Remedy — Mass-lumping: replace M. by approximation Mt such that
» ML corresponds to positive definite matrix (stability)
» ML is good approximation for M, (accuracy)
» (ML)~1 can be applied efficiently (efficiency)

construction of ML usually via numerical quadrature; see [Cohen’02].
5/15



Proposed solutions

Extended finite element space.

Add additional interior basis functions [ElmkiesJoly’93].

THIH{ ° Vi(Q) = M§(Q) & B = Ei(Q)

1 . @ =P(Q)

})\ s Vi(T) = M(T) @ B = EL(Q)
o o Qh(T) = ’Dl(T)

Numerical Integration
Use the midpoint rule, which is exact for P, functions.
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Proposed solutions

Extended finite element space.

Add additional interior basis functions [ElmkiesJoly'93].

—
THIHW ° Vh(@=Né(§)@B=EJ1(§)
] a@=P(Q
[H\ 3 Vi(T) = M{(T) & B = E1y(Q)
o o Qn(T) = Pi(T)

Lemma (accuracy)
If E and H are sufficiently smooth. Then

1E(t) = En(t)[ + [[H(2) — Hi(t)]| < Ch
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A different solution

Another choice of finite elements

— —

T o T @=m@

| l Qn(Q) = Po(Q)
— =

[ V() = MI(T)

! " Qn(T) = Po(T)

— =
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A different solution

Another choice of finite elements

— —
o W@=Mm@
! L Q@) =Po(Q)
— =
[ V() = MI(T)
! N Qn(T) = Po(T)
— =

Lemma (accuracy)
If E and H are sufficiently smooth. Then

IE(t) — En(t)[l + [[H(t) — Hi(t)]| < Ch
Moreover, |[MOH(t) — Hp(t)|| < Ch? and for a special projection My,
INKE() = En(r)]| < Ch°
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Recall the lumped Galerkin discretization

(éatEh(t), Vh)h — (Hh(t), curl Vh)Q =0
(/,LatHh(t), qh)g + (curl Eh(l’), qh)Q =0

Use the elliptic projection
(Mhed:E(t), vi)n — (FaH(t),curl vy) = 0 Yvi € Vi,

(curl 0. E(t), gn) = (curl 0:E(t),qn)  Van € Qn.
Then, we have

(e0:En(t) — Taed:E(t). vi)n — (Ha(t) — TnH(t), curl vi)q = 0
(1OeHA(t) — FauH(t), gn)a + (curl (En(t) — MAE(t)), gn)a =
= (uO:Hp(t) — ﬁ?,,uH(t), dn)a

With this, we can devise a non-local post-processing strategy for £
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Embedding quadrature

Idea. Use lowest order space V/}, to represent solution, compute update
in enriched space V}, and then project back to V,

— == Loas
B E DN

Formal representation of inverse mass matrix.

(MY =P (ML) P

€
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Embedding quadrature

Idea. Use lowest order space V/}, to represent solution, compute update
in enriched space V}, and then project back to V,

— — —

. pT T 1IN
B DN

[—— — —

Formal representation of inverse mass matrix.
(M) =P (M) PT
Lemma [EggerRadu’18].
IE(t) — En(t)]| + | H(t) — Ha(t)]| < Ch
and superconvergence
[MOH(t) — Ha(t)|| < Ch* and  ||M4E(t) — Ep(t)|| < ch”

with 7 = 2 on regular and 3/2 <~ < 2 on uniformly refined meshes

Moreover, method equivalent to FDTD/FIT on rectangular grids!
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Higher order

For first order elements, the quadrature formula was exact for
Vi x Py C P;. Intuition suggests that for higher order elements, it should
be exact for Vj, x P;. We show that it is possible to relax this condition.
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Higher order

For first order elements, the quadrature formula was exact for
Vi x Py C P;. Intuition suggests that for higher order elements, it should
be exact for Vj, x P;. We show that it is possible to relax this condition.

Recall the elliptic projection

(ﬁhE(t)7 Vh)h — (%hHh(t),CUH Vh) =0 Vv, € Vh,
“ (curl LE(t), gn) = (curl E(£),qn)  Van € Qn.
e Vi(T) = (F)
UL L e =R
— =
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Higher Order

Recall the elliptic projection

(I'IhE(t), Vh)h — (%hHh(t),CUH Vh) =0 Vv, € Vh,

(curl TLE(t), gn) = (curl E(t),qn)  Van € Qn.
Lemma [EggerRadu’18].

— Ep h — Hp <
IE(t) = En(t)]| + INFH(t) — Ha(t)]| < Ch?
and, under elliptic regularity

INRH(E) = Hu(8)]| < Ch°

Remark. This result also holds for Maxwells equations.
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Comparison

CFL condition

‘CFL Number

NT-Py (N]-Po) 0.288

EJi-P; 0.131

NI-Py 0.094

EJo-P5 0.039

CPU Runtime

h | 27t | 272 | 273 | 2% | 275
NT-P, ] 0.0590 [ 0.0704 | 0.1785 | 0.6780 | 2.6101
EJ;-P; [ 0.1032 | 0.1837 | 0.6682 | 2.4143 | 9.9358
NJ-P; ] 0.1065 [ 0.1965 | 0.7327 | 2.8115 | 11.4102
EJo-PJ | 0.3103 | 0.8093 | 3.4265 | 19.4949 | 86.3967

Table: Duration of 10000 time steps in seconds for lumped methods. Leap-frog
with pre-computed inverse of the mass matrix.
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Further results and open problems

Simulation on unstructured mesh
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Further results and open problems

Simulation on unstructured mesh
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Further results and current research
» similar results for tetrahedra, hexahedra, prisms
» quadrature rules and mass lumping for higher order approximations

» local post-processing schemes yielding h? full convergence
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Further results and open problems

Simulation on unstructured mesh

Further results and current research
» similar results for tetrahedra, hexahedra, prisms
» quadrature rules and mass lumping for higher order approximations
» local post-processing schemes yielding h? full convergence

Further reseearch directions
» complete error analysis for uniformly refined unstructured grids
> finite elements, quadrature rules, and mass lumping for pyramids
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