Mass-lumped mixed finite element methods for Maxwell's equations

H. Egger and B. Radu

September 12, 2019

Application. Electromagnetic wave propagation in linear and non-dispersive but possibly inhomogeneous and anisotropic media

 $\epsilon \partial_t E(t) = \operatorname{curl} H(t) - \sigma E(t)$ $\mu \partial_t H(t) = -\operatorname{curl} E(t)$

in Ω , t > 0 with E(0) = 0 in Ω and $n \times E(t) = 0$ on $\partial \Omega$

Goal: systematic and flexible space discretization

- stable: no artificial energy production
- accurate: provable convergence rates
- efficient: appropriate for explicit time-stepping methods

Methods: FDTD/FIT, FVM, FEM, DG, ...

Galerkin approximation

Approximation spaces: $V_h \subset H_0(\operatorname{curl}; \Omega)$ and $Q_h \subset L^2(\Omega)$

Galerkin approximation

Approximation spaces: $V_h \subset H_0(\operatorname{curl}; \Omega)$ and $Q_h \subset L^2(\Omega)$

Galerkin method: For t > 0, tind $E_h(t) \in V_h$ and $H_h(t) \in Q_h$ such that

$$\begin{aligned} (\epsilon \partial_t E_h(t), v_h)_{\Omega} - (H_h(t), \operatorname{curl} v_h)_{\Omega} &= 0\\ (\mu \partial_t H_h(t), q_h)_{\Omega} + (\operatorname{curl} E_h(t), q_h)_{\Omega} &= 0 \end{aligned}$$

for all test functions $v_h \in V_h$ and $q_h \in Q_h$, and for all t > 0

Approximation spaces: $V_h \subset H_0(\operatorname{curl}; \Omega)$ and $Q_h \subset L^2(\Omega)$

Galerkin method: For t > 0, tind $E_h(t) \in V_h$ and $H_h(t) \in Q_h$ such that

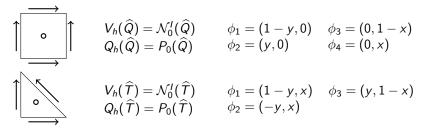
$$(\epsilon \partial_t E_h(t), v_h)_{\Omega} - (H_h(t), \operatorname{curl} v_h)_{\Omega} = 0$$
$$(\mu \partial_t H_h(t), q_h)_{\Omega} + (\operatorname{curl} E_h(t), q_h)_{\Omega} = 0$$

for all test functions $v_h \in V_h$ and $q_h \in Q_h$, and for all t > 0

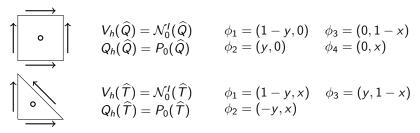
Algebraic realization.

$$\mathbf{M}_{\epsilon} \partial_t \mathbf{e}(t) - \mathbf{C}^{\top} \mathbf{h}(t) = 0 \mathbf{D}_{\mu} \partial_t \mathbf{h}(t) + \mathbf{C} \mathbf{e}(t) = 0$$

Finite element spaces on reference elements.

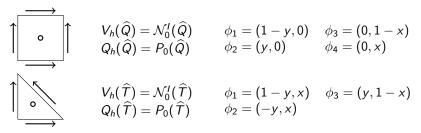


Finite element spaces on reference elements.



Note: Construction for "physical" elements Q or T by Piola-transform

Finite element spaces on reference elements.



Note: Construction for "physical" elements Q or T by Piola-transform

Lemma (accuracy) [EggerRadu'18,DupontKeenan'98,LiBank'18]. If *E* and *H* are sufficiently smooth. Then

 $||E(t) - E_h(t)|| + ||H(t) - H_h(t)|| \le Ch$

By duality argument, one can show super-convergence (ONLY 2D)

$$\|\Pi_h^0 H(t) - H_h(t)\| \le Ch^2$$

Stability and accuracy.

Lowest order MFEM yields stable and accurate approximation in space.

Stability and accuracy.

Lowest order MFEM yields stable and accurate approximation in space.

Numerical solution. Time integration of resulting ode system

$$\begin{split} \mathbf{M}_{\epsilon}\partial_{t}\mathbf{e}(t) - \mathbf{C}^{\top}\mathbf{h}(t) &= 0\\ \mathbf{D}_{\mu}\partial_{t}\mathbf{h}(t) + \mathbf{C} \ \mathbf{e}(t) &= 0 \end{split}$$

by explicit schemes requires application of $\mathbf{M}_{\epsilon}^{-1}$ and \mathbf{D}_{μ}^{-1} .

Stability and accuracy.

Lowest order MFEM yields stable and accurate approximation in space.

Numerical solution. Time integration of resulting ode system

$$\begin{split} \mathbf{M}_{\epsilon}\partial_{t}\mathbf{e}(t) - \mathbf{C}^{\top}\mathbf{h}(t) &= 0\\ \mathbf{D}_{\mu}\partial_{t}\mathbf{h}(t) + \mathbf{C}\ \mathbf{e}(t) &= 0 \end{split}$$

by explicit schemes requires application of $\mathbf{M}_{\epsilon}^{-1}$ and \mathbf{D}_{μ}^{-1} .

Note. Here \mathbf{D}_{μ} diagonal, but \mathbf{M}_{ϵ} does not have a sparse inverse! Thus, explicit time-stepping for standard MFEM is not efficient.

Stability and accuracy.

Lowest order MFEM yields stable and accurate approximation in space.

Numerical solution. Time integration of resulting ode system

$$\begin{split} \mathbf{M}_{\epsilon}\partial_{t}\mathbf{e}(t) - \mathbf{C}^{\top}\mathbf{h}(t) &= 0\\ \mathbf{D}_{\mu}\partial_{t}\mathbf{h}(t) + \mathbf{C} \ \mathbf{e}(t) &= 0 \end{split}$$

by explicit schemes requires application of $\mathbf{M}_{\epsilon}^{-1}$ and \mathbf{D}_{μ}^{-1} .

Note. Here \mathbf{D}_{μ} diagonal, but \mathbf{M}_{ϵ} does not have a sparse inverse! Thus, explicit time-stepping for standard MFEM is not efficient.

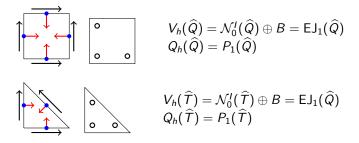
Remedy – Mass-lumping: replace \mathbf{M}_{ϵ} by approximation $\mathbf{M}_{\epsilon}^{L}$ such that

- $\mathbf{M}_{\epsilon}^{L}$ corresponds to positive definite matrix (stability)
- $\mathbf{M}_{\epsilon}^{L}$ is good approximation for \mathbf{M}_{ϵ} (accuracy)
- $(\mathbf{M}_{\epsilon}^{L})^{-1}$ can be applied efficiently (efficiency)

construction of $\mathbf{M}_{\epsilon}^{L}$ usually via numerical quadrature; see [Cohen'02].

Extended finite element space.

Add additional interior basis functions [ElmkiesJoly'93].

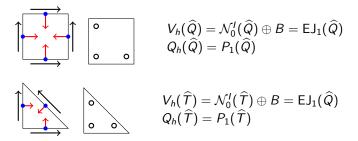


Numerical Integration

Use the midpoint rule, which is exact for P_2 functions.

Extended finite element space.

Add additional interior basis functions [ElmkiesJoly'93].

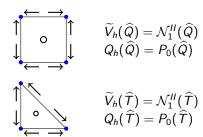


Lemma (accuracy) If E and H are sufficiently smooth. Then

 $||E(t) - E_h(t)|| + ||H(t) - H_h(t)|| \le Ch$

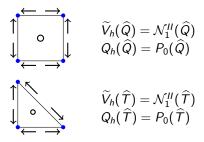
A different solution

Another choice of finite elements



A different solution

Another choice of finite elements



Lemma (accuracy) If E and H are sufficiently smooth. Then

 $||E(t) - E_h(t)|| + ||H(t) - H_h(t)|| \le Ch$

Moreover, $\|\Pi_h^0 H(t) - H_h(t)\| \le Ch^2$ and for a special projection $\widehat{\Pi}_h$ $\|\widehat{\Pi}_h E(t) - E_h(t)\| \le Ch^2$

Idea why

Recall the lumped Galerkin discretization

$$(\epsilon \partial_t E_h(t), v_h)_h - (H_h(t), \text{curl } v_h)_\Omega = 0$$
$$(\mu \partial_t H_h(t), q_h)_\Omega + (\text{curl } E_h(t), q_h)_\Omega = 0$$

Use the elliptic projection

$$(\widehat{\Pi}_h \epsilon \partial_t E(t), v_h)_h - (\widehat{\pi}_h H(t), \operatorname{curl} v_h) = 0 \qquad \forall v_h \in V_h,$$
$$(\operatorname{curl} \widehat{\Pi}_h \partial_t E(t), q_h) = (\operatorname{curl} \partial_t E(t), q_h) \qquad \forall q_h \in Q_h.$$

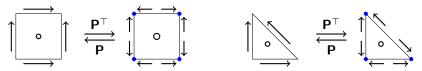
Then, we have

$$\begin{aligned} (\epsilon \partial_t E_h(t) - \widehat{\Pi}_h \epsilon \partial_t E(t), v_h)_h - (H_h(t) - \widehat{\pi}_h H(t), \text{curl } v_h)_\Omega &= 0\\ (\mu \partial_t H_h(t) - \widehat{\pi}_h \mu H(t), q_h)_\Omega + (\text{curl } (E_h(t) - \widehat{\Pi}_h E(t)), q_h)_\Omega &= \\ &= (\mu \partial_t H_h(t) - \widehat{\Pi}_h^0 \mu H(t), q_h)_\Omega \end{aligned}$$

With this, we can devise a non-local post-processing strategy for E

Embedding quadrature

Idea. Use lowest order space V_h to represent solution, compute update in enriched space \widetilde{V}_h , and then project back to V_h

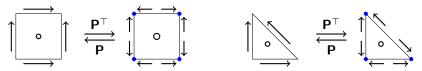


Formal representation of inverse mass matrix.

 $(\mathsf{M}^{L}_{\epsilon})^{-1} = \mathsf{P} (\widetilde{\mathsf{M}}^{L}_{\epsilon}) \mathsf{P}^{\top}$

Embedding quadrature

Idea. Use lowest order space V_h to represent solution, compute update in enriched space \widetilde{V}_h , and then project back to V_h



Formal representation of inverse mass matrix.

$$(\mathsf{M}^{L}_{\epsilon})^{-1} = \mathsf{P} (\widetilde{\mathsf{M}}^{L}_{\epsilon}) \mathsf{P}^{\top}$$

Lemma [EggerRadu'18].

$$||E(t) - E_h(t)|| + ||H(t) - H_h(t)|| \le Ch$$

and superconvergence

$$\|\Pi_h^0 H(t) - H_h(t)\| \leq Ch^2$$
 and $\|\Pi_h E(t) - E_h(t)\| \leq ch^\gamma$

with $\gamma = 2$ on regular and $3/2 \le \gamma \le 2$ on uniformly refined meshes Moreover, method equivalent to FDTD/FIT on rectangular grids!

Higher order

For first order elements, the quadrature formula was exact for $V_h \times P_0 \subseteq P_2$. Intuition suggests that for higher order elements, it should be exact for $V_h \times P_1$. We show that it is possible to relax this condition.

Higher order

For first order elements, the quadrature formula was exact for $V_h \times P_0 \subseteq P_2$. Intuition suggests that for higher order elements, it should be exact for $V_h \times P_1$. We show that it is possible to relax this condition.

Recall the elliptic projection

Higher Order

Recall the elliptic projection

$$\begin{aligned} (\widehat{\Pi}_h E(t), v_h)_h - (\widehat{\pi}_h H_h(t), \operatorname{curl} v_h) &= 0 & \forall v_h \in V_h, \\ (\operatorname{curl} \widehat{\Pi}_h E(t), q_h) &= (\operatorname{curl} E(t), q_h) & \forall q_h \in Q_h. \end{aligned}$$
Lemma [EggerRadu'18].

$$\|E(t) - E_h(t)\| + \|\Pi_h^0 H(t) - H_h(t)\| \le Ch^2$$

and, under elliptic regularity

$$\|\Pi_h^0 H(t) - H_h(t)\| \le Ch^3$$

Remark. This result also holds for Maxwells equations.

Comparison

CFL condition

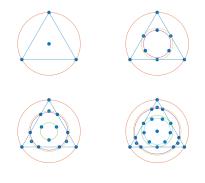
	CFL Number		
$\mathcal{N}_1^{\prime\prime}$ - $\mathbf{P}_0 \ (\mathcal{N}_1^{\prime}$ - $\mathbf{P}_0)$	0.288		
$EJ_1-\mathbf{P}_1$	0.131		
\mathcal{N}_2' - \mathbf{P}_1	0.094		
$EJ_2-P_2^+$	0.039		

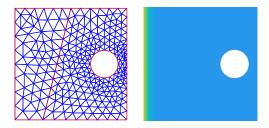
CPU Runtime

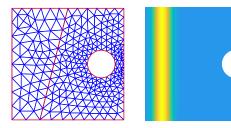
h	2 ⁻¹	2 ⁻²	2 ⁻³	2 ⁻⁴	2 ⁻⁵
\mathcal{N}_1'' - \mathbf{P}_0	0.0590	0.0704	0.1785	0.6780	2.6101
EJ_1-P_1	0.1032	0.1837	0.6682	2.4143	9.9358
\mathcal{N}_2' - \mathbf{P}_1	0.1065	0.1965	0.7327	2.8115	11.4102
$EJ_2 - P_2^+$	0.3103	0.8093	3.4265	19.4949	86.3967

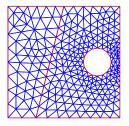
Table: Duration of 10000 time steps in seconds for lumped methods. Leap-frog with pre-computed inverse of the mass matrix.

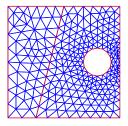
Even higher orders

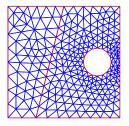


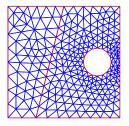


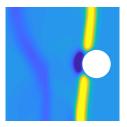


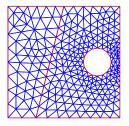


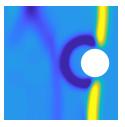




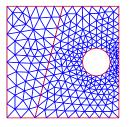


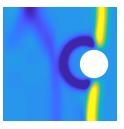






Simulation on unstructured mesh

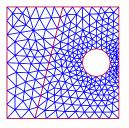




Further results and current research

- similar results for tetrahedra, hexahedra, prisms
- quadrature rules and mass lumping for higher order approximations
- ▶ local post-processing schemes yielding h^2 full convergence

Simulation on unstructured mesh



Further results and current research

- similar results for tetrahedra, hexahedra, prisms
- quadrature rules and mass lumping for higher order approximations
- local post-processing schemes yielding h^2 full convergence

Further reseearch directions

- complete error analysis for uniformly refined unstructured grids
- ▶ finite elements, quadrature rules, and mass lumping for pyramids

H. Egger and B. Radu.

Super-convergence and post-processing for mixed finite element approximations of the wave equation.

Numer. Math. 140, 2018.

🔒 H. Egger and B. Radu.

A mass-lumped mixed finite element method for acoustic wave propagation. <code>arXive:1803.04238, 2018</code>

- G. C. Cohen. Higher-Order Numerical Methods for transient Wave Equations. Springer, 2002.
- M. F. Wheeler and I. Yotov. A multipoint flux mixed finite element method. SIAM J. Numer. Anal. 44, 2006.
- T. F. Dupont and P. T. Keenan.

Superconvergence and Postprocessing of Fluxes from Lowest-Order Mixed Methods on Triangles and Tetrahedra. *SIAM J. Sci. Comput.* 19, 1998.

Y.-W. Le and R. E. Bank.

Superconvergence recovery of Raviart-Thomas mixed finite elements on irregular triangulations. arxive.1802.04963, 2018.