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Motivation

Figure: Cross section of a permanent magnet
synchronous machine (PMSM)

Relevance:

▶ Automotive industry

▶ Parameter studies, shape
optimization of motors

▶ Torque computation of
electric motors

Challenges:

▶ Anisotropic nonlinear
material laws

▶ Rotating geometries

▶ Non-smooth coefficients

▶ Fast, reliable,
accurate simulations
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Maxwell’s equations for magnetostatics

▶ Let Ω ⊆ R2 be a simply connected domain and consider Maxwell’s equations

curlH = J (Ampere Law)

divB = 0 (Gauss Law)

n ·B = 0 on ∂Ω

▶ Nonlinear material law

H = f ′(B) or B = g′(H)

Here f and g are the energy/coenergy densities.
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▶ Let Ω ⊆ R2 be a simply connected domain and consider Maxwell’s equations

curlH = J (Ampere Law)

divB = 0 (Gauss Law)

n ·B = 0 on ∂Ω

▶ Nonlinear material law

H = f ′(B) or B = g′(H)

Here f and g are the energy/coenergy densities. Further, we have

▶ Coil, air and shaft : g′(H) = µH

▶ Magnets : g′(H) = µ̃H −M

▶ Iron : g′(H)
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The primal formulation

▶ Functional analytical setting: For v = (v1, v2) and q, let

curl v = ∂xv2 − ∂yv1 Curl q = (∂yq,−∂xq)
⊤

H(curl,Ω) = {v ∈ L2(Ω)2 | curl v ∈ L2(Ω)}
H(Curl,Ω) = {q ∈ L2(Ω) | Curl q ∈ L2(Ω)2}
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H(curl,Ω) = {v ∈ L2(Ω)2 | curl v ∈ L2(Ω)}
H(Curl,Ω) = {q ∈ L2(Ω) | Curl q ∈ L2(Ω)2}

▶ For a simply connected Ω, we know there exists A with CurlA = B.

▶ Substituting leads to

curl(f ′(CurlA)) = J in Ω

A = 0 on ∂Ω

▶ Weak formulation:

Find A ∈ H0(Curl,Ω) :

(f ′(CurlA),Curl v) = (J, v) ∀v ∈ H0(Curl,Ω)
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The primal discretization

Find A ∈ H0(Curl,Ω) :

(f ′(CurlA),Curl v) = (J, v) ∀v ∈ H0(Curl,Ω)

Theorem
Assume f satisfies:

▶ f ∈ C1(Ω)

▶ f ′ Lipschitz continuous

▶ f ′ is strongly monotonic (coercive), i.e. (f ′(x)− f ′(y))(x− y) ≥ c|x− y|2

Then the system above admits a unique solution.

▶ 1960 - Zarantonello - Solving functional equations by contractive averaging.
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The primal discretization

Find Ah ∈ Vh ⊂ H(Curl,Ω) :

(f ′(CurlAh),Curl vh) = (J, vh) ∀vh ∈ Vh ⊆ H0(Curl,Ω)

Theorem
Assume f satisfies:

▶ f ∈ C1(Ω)

▶ f ′ Lipschitz continuous

▶ f ′ is strongly monotonic (coercive), i.e. (f ′(x)− f ′(y))(x− y) ≥ c|x− y|2

Then the system above admits a unique solution.

▶ 1960 - Zarantonello - Solving functional equations by contractive averaging.

▶ The diescrete problem admits a unique solution as well.
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The primal discretization

▶ Remarks:

▶ Used as a standard in solving magnetostatics. (FEMM)

▶ Linearizing with Newton, each step requires the solution of an elliptic
problem.

▶ Line search for the equivalent minimization problem min
A∈H1

0 (Ω)

∫
Ω
f(curlA)

▶ Provable convergence orders

▶ But ...

▶ If Vh = P1(Th) ∩H1
0 (Ω), then B and H are only approximated in P0(Th),

which are actually the quantities of interest, in general.

▶ The physical Ampere law is only satisfied in a weak sense, while the material
law is satisfied pointwise on the discrete level.

curl(

H︷ ︸︸ ︷
f ′(CurlA︸ ︷︷ ︸

B

) = J

▶ We do not have access to either t ·H or n ·B across element interfaces.

▶ Solution: use the mixed formulation instead!
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The mixed formulation

▶ Idea: eliminate B instead of H. This leads to:

B = g′(H)

CurlA = B

curlH = J
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The mixed formulation
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The mixed formulation

▶ Idea: eliminate B instead of H. This leads to:
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▶ 1992 - Barba, Marini, Savini - Mixed finite elements in magnetostatics.
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curlH = J
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Find H ∈ H(curl,Ω) and A ∈ L2(Ω) :

(g′(H), v)− (A, curl v) = 0 ∀v ∈ H(curl,Ω)

(curlH, q) = (J, q) ∀q ∈ L2(Ω)

▶ 1992 - Barba, Marini, Savini - Mixed finite elements in magnetostatics.

▶ The solution of the variational formulation solves

min
H∈H(curl,Ω)

∫
Ω

g(H) s.t. curlH = J
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The mixed formulation

▶ Variational formulation

Find H ∈ H(curl,Ω) and A ∈ L2(Ω) :

(g′(H), v)− (A, curl v) = 0 ∀v ∈ H(curl,Ω)

(curlH, q) = (J, q) ∀q ∈ L2(Ω)

Theorem
Assume g satisfies:

▶ g ∈ C1(Ω)

▶ g′ Lipschitz continuous

▶ g′ is strongly monotonic (coercive), i.e. (g′(x)− g′(y))(x− y) ≥ c|x− y|2

Then the system above admits a unique solution.
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The mixed formulation

▶ Discrete variational formulation

Find Hh ∈ Vh ⊆ H(curl,Ω) and Ah ∈ Qh ⊆ L2(Ω) :

(g′(Hh), vh)− (Ah, curl vh) = 0 ∀vh ∈ Vh

(curlHh, qh) = (J, qh) ∀qh ∈ Qh

Theorem
Assume g satisfies:

▶ g ∈ C1(Ω)

▶ g′ Lipschitz continuous

▶ g′ is strongly monotonic (coercive), i.e. (g′(x)− g′(y))(x− y) ≥ c|x− y|2

Further assume (Vh, Qh) form a stable inf-sup pair.

Then the system above admits a unique solution.
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Finite element spaces

▶ Finite element spaces on reference elements.

Vh(T ) = N0(T )
Qh(T ) = P0(T )

Vh(T ) = N1(T )
Qh(T ) = P1(T )

▶ 1980 - Nedelec - Mixed finite elements in R3

Theorem

For Vh = Nk(Th) ∩H(curl,Ω) and Qh = Pk(Th), we have

∥H −Hh∥H(curl) + ∥A−Ah∥L2 ≤ Chk

where (Hh, Ah) and (H,A) solve the continuous and discrete problems, resp.

▶ 1992 - Monk - Analysis of a finite element method for Maxwell’s equations

▶ 1993 - Monk - An analysis of Nedelec’s method for spatial discretization of Maxwell’s

equations
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Linearization

▶ We use the Newton method: Construct sequences (Hn
h , A

n
h)n≥1 with

(Hn+1
h , An+1

h ) = (Hn
h , A

n
h)− τn(δHn

h , δA
n
h)

where (Hn
h , A

n
h) solve

Find δHn
h ∈ Vh ⊆ H(curl,Ω) and δAn

h ∈ Qh ⊆ L2(Ω) :

(g′′(Hn
h )δH

n
h , vh)− (δAn

h, curl vh) = (g′(Hn
h ), vh) ∀vh ∈ Vh

(curl δHn
h , qh) = (J, qh) ∀qh ∈ Qh

▶ Existence and uniqueness of solutions for each linearized system follows from
the assumptions on g and the fact that Vh and Qh form a stable pair in the
context of Brezzi theory.

▶ We choose τn by using Armijo Backtracking. This guarantees global
convergence for the Newton method.
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Hybridization

▶ In each Newton step, we need to solve a system of the form

Find δHn
h ∈ Vh ⊆ H(curl,Ω) and δAn

h ∈ Qh ⊆ L2(Ω) :

(g′′(Hn
h )δH

n
h , vh)− (δAn

h, curl vh) = (g′(Hn
h ), vh) ∀vh ∈ Vh

(curl δHn
h , qh) = (J, qh) ∀qh ∈ Qh

13 / 16



Hybridization
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h

(curl δHn
h , qh)T = (J, qh) ∀ qh ∈ Qh

([n× δHn
h ], µh)F = 0 ∀µh ∈ Lh

▶ We can now proceed to eliminate both δHh and δAh algebraically, which yields

a symmetric positive definite system for the Lagrange multiplier δ̂Ah alone.M −B⊤ L⊤

B 0 0
L 0 0

δh
δa
δâ

 =

r
j
0



13 / 16



Hybridization

▶ In each Newton step, we need to solve a system of the form

▶ Relax the H(curl)-continuity by using hybridization.

Find δHn
h ∈ V di

h , δAn
h ∈ Qh and δ̂An

h ∈ Lh for all T ∈ Th :

(g′′(Hn
h )δH

n
h , vh)T −(δAn

h , curl vh)T + (δ̂An
h , [n× vh])F = (g′(δAn

h), vh)T ∀ vh ∈ V di
h

(curl δHn
h , qh)T = (J, qh) ∀ qh ∈ Qh

([n× δHn
h ], µh)F = 0 ∀µh ∈ Lh

▶ We can now proceed to eliminate both δHh and δAh algebraically, which yields

a symmetric positive definite system for the Lagrange multiplier δ̂Ah alone.(
−BM−1B⊤ BM−1L⊤

−LM−1B⊤ LM−1L⊤

)(
δa
δâ
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Hybridization

▶ In each Newton step, we need to solve a system of the form

▶ Relax the H(curl)-continuity by using hybridization.
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h

(curl δHn
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([n× δHn
h ], µh)F = 0 ∀µh ∈ Lh

▶ We can now proceed to eliminate both δHh and δAh algebraically, which yields

a symmetric positive definite system for the Lagrange multiplier δ̂Ah alone.(
−LM−1L⊤ + LM−1B⊤(BM−1B⊤)−1BM−1L⊤

)
δâ = . . .
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Algorithmic framework

▶ (1) Start with initial guesses H0
h, A

0
h.

▶ (2) For n ≥ 0 assemble the system

Find δHn
h ∈ V di

h , δAn
h ∈ Qh and δ̂An

h ∈ Lh for all T ∈ Th :

(g′′(Hn
h )δH

n
h , vh)T −(δAn

h , curl vh)T + (δ̂An
h , [n× vh])F = (g′(δAn

h), vh)T ∀ vh ∈ V di
h

(curl δHn
h , qh)T = (J, qh) ∀ qh ∈ Qh

([n× δHn
h ], µh)F = 0 ∀µh ∈ Lh

and reduce it to a s.p.d. system in δ̂An
h alone.

▶ (3) Solve for δ̂An
h

▶ (4) From δ̂An
h, compute δHn

h and δAn
h from local systems

▶ (5) Compute the step size τn by Armijo backtracking and apply the update

(Hn+1
h , An+1

h ) = (Hn
h , A

n
h)− τn(δHn

h , δA
n
h)

▶ (6) If tolerance is achieved, stop. Otherwise jump to (2).
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and reduce it to a s.p.d. system in δ̂An
h alone. This is fast!

▶ (3) Solve for δ̂An
h This is where most of the computational time is spent!
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Postprocessing for the B-field

▶ While Hh ∈ H(curl,Ω), we just have Bh := g′(Hh) ∈ L2(Ω).
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▶ Existence ✓, Uniqueness ✓. Can be solved efficiently by hybridization.

▶ We now have both Hh ∈ H(curl,Ω) and Bh ∈ H0(div,Ω)

▶ A discrete Bh can also be constructed locally from Âh and the fields Hh, Ah.
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Why mixed? Outlook

▶ Why use the mixed formulation over the primal one?

▶ We approximate the constitutive laws exactly, while the material laws are
only imposed weakly.

▶ Direct access to t ·H and n ·B along interfaces.

▶ Better handling of jumping coefficients.

▶ Stator-rotor coupling by mortaring is automatically covered.

▶ However...

▶ Larger system matrices, but better stencils.

▶ Further improvement of the stencil possible through numerical integration
and clever choices of basis functions.

▶ Number of Newton iterations?

▶ Fair time-to-solution simulations needed...
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