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Maxwell's equations

Electromagnetic wave propagation in linear and non-dispersive but
possibly inhomogeneous and anisotropic media

e E(t)= curll H(t) —oE(t)
wOH (t) = —curl E(t)

in Q, with E(0) = Ey and H(0) = Hy in Q and n x E(t) =0 on 9Q
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Maxwell's equations

Electromagnetic wave propagation in linear and non-dispersive but
possibly inhomogeneous and anisotropic media

e E(t)= curll H(t) —oE(t)
wOH (t) = —curl E(t)

in Q, with E(0) = Ey and H(0) = Hy in Q and n x E(t) =0 on 9Q

Goal: systematic and flexible space discretization
> stable: no artificial energy production
» accurate: provable convergence rates

> efficient: appropriate for explicit time-stepping methods

Methods: FDTD/FIT, FEM, FVM, DG, ...
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Finite element method

e E(t)= curl H(t) —oE(t)
wOH (t) = —curl E(t)
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Finite element method

e E(t)= curl H(t) —oE&]
wOH (t) = —curl E(t)

Approximation spaces: V}, C Hy(curl; Q) and Q;, C L*(Q)
Galerkin method: For ¢ > 0, find Ej(t) € V}, and Hy(t) € Qp, such that

(GatEh(t),’Uh)Q — (Hh(t),curl 'Uh)Q =0
(uOLHp(t), qn)a + (curl E(t),qn)a =0

for all test functions v, € V}, and g, € @y, and for all t > 0.
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Finite element method

e E(t)= curl H(t) —oE&]
wOH (t) = —curl E(t)

Approximation spaces: V}, C Hy(curl; Q) and Q;, C L*(Q)
Galerkin method: For ¢ > 0, find Ej(t) € V}, and Hy(t) € Qp, such that

(GatEh(t),’Uh)Q — (Hh(t),curl 'Uh)Q =0
(uOLHp(t), qn)a + (curl E(t),qn)a =0

for all test functions v, € V}, and g, € @y, and for all t > 0.

Algebraic realization.

M.d,e(t) — CTh(t) =0
D,oh(t)+Ce(t) =0
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First order elements

Finite element spaces on reference elements.

T

—
—
I w@=-MD  a-(-s) =12

—

T Vi(Q)
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First order elements

Finite element spaces on reference elements.

—

I w@=-MD  a-(-s) =12
—— B

Note: Construction for “physical” elements @ or T' by Piola-transform
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First order elements

Finite element spaces on reference elements.

—
T o T Vi@ =M(@Q  61=(1-90) ¢5=1(0,1-z)
Qr(Q) = P (Q) $2 = (y,0) ¢4 = (0,z)
—
T N\ VWD) =N{(T)  dr=(-y,2) é5=(y1-2)
° Qn(T) = Py(T) ¢2 = (—y, )
—

Note: Construction for “physical” elements @ or T' by Piola-transform

Lemma (accuracy) [EggerRadu’18,DupontKeenan’98,LiBank’18].
If E and H are sufficiently smooth. Then

1E(®) = En()|| + [ H(t) — Ha(t)[| < Ch
By duality argument, one can show super-convergence (ONLY 2D)

|0 H (t) — Hu(t)]| < Ch?
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Lowest order elements

Stability and accuracy.
Lowest order MFEM yields stable and accurate approximation in space.
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Stability and accuracy.
Lowest order MFEM yields stable and accurate approximation in space.

Numerical solution. Time integration of resulting ode system

M_dse(t) — CTh(t) =0
D,0:h(t)+Ce(t) =0

by explicit schemes requires application of M_! and D, .
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Note. Here D,, diagonal, but M, does not have a sparse inverse!
Thus, explicit time-stepping for standard MFEM is not efficient.
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Lowest order elements

Stability and accuracy.
Lowest order MFEM yields stable and accurate approximation in space.

Numerical solution. Time integration of resulting ode system

M_dse(t) — CTh(t) =0
D,0:h(t)+Ce(t) =0

by explicit schemes requires application of M_! and D, .

Note. Here D,, diagonal, but M, does not have a sparse inverse!
Thus, explicit time-stepping for standard MFEM is not efficient.

Remedy — Mass-lumping: replace M, by approximation MZ% such that
» MZ corresponds to positive definite matrix (stability)
» ML is good approximation for M, (accuracy)
» (MZ£)~! can be applied efficiently (efficiency)

construction of M usually via numerical quadrature; see [Cohen’02].

5/17



Mass lumping literature

» 1990 - Lee, Madsen - A mixed FEM formulation for Maxwell’s equations in the
time domain

» 1995 - Cohen, Monk - Mass lumped edge elements in three dimensions

» 1997 - Elmkies, Joly - Elements finis d'arete et condensation de masse pour les
equations de Maxwell - le cas 3D

» 1998 - Cohen, Monk - Gauss Point Mass Lumping Schemes for Maxwell’s
Equations

» 1999 - Kong, Mulder, Veldhuizen - Higher-order triangular and tetrahedral finite
elements with mass lumping for solving the wave equation

> 2000 - Becache, Joly, Tsogka - An analysis of new mixed finite elements for the
approximation of wave propagation models

» 2001 - Mulder - Higher-order mass-lumped finite elements for the wave equation

» 2018 - Geevers, Mulder, Vegt - New higher-order mass-lumped tetrahedral
elements for wave propagation modelling

> 2018 - Egger, Radu - A mass-lumped mixed finite element method for acoustic
wave propagation

» 2018 - Egger, Radu - A mass-lumped mixed finite element method for Maxwell's
equations
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—
—
TN wD=M@D) =50 6=@1-0

—

T Vi(Q)
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—

T o T Vi@ =M@  s1=(01-90 ¢=(01-2)
Qu(@Q) =PR(Q)  S2=0)  és=(0,2)

—

T \ Vh(ji):-/\/ol(f) ¢1:(1*y7x) ¢3:(y,17$)
° Qn(T) = Ro(T) ¢2 = (-, @)
—

Observation: No "good” quadrature rule that leads to decoupling of
entries in mass matrix for Vj,.

One existing method : acute mesh lumping

» 1996 - Baranger - Connection between finite volume and mixed
finite element methods
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Strategy 1 : Extended finite element space

Add additional interior basis functions [ElmkiesJoly’93].

—
(= ! 0 Vi@ = M{(0) & B = ENL(@) C Px(D)
I o o Qn(Q) = P1(Q)
T,_)\ S V(D) = N (T) & B = EL(T) C Po(T)
o o Qn(T) = P(T)

Numerical Integration
Use the midpoint rule, which is exact for P, functions.
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Strategy 1 : Extended finite element space

Add additional interior basis functions [ElmkiesJoly’93].

(= ! 0 Vi@ = M{(0) & B = ENL(@) C Px(D)
I o o Qn(Q) = P1(Q)
T,_)\ S V(D) = N (T) & B = EL(T) C Po(T)
o o Qn(T) = P(T)

Numerical Integration
Use the midpoint rule, which is exact for P, functions.

Exactness requirement

The quadrature rule should be exact for P, x V},, k = 0 for the first order
case
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Strategy 1 : Extended finite element space

Add additional interior basis functions [ElmkiesJoly’93].

Numerical Integration
Use the midpoint rule, which is exact for P, functions.

Lemma (accuracy)
If £ and H are sufficiently smooth. Then

1E(t) = En(@)|| + [ H(t) — Hn(D)]| < Ch
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Strategy 2 : Different FEM space

Use a higher order space [WheelerYotov’06]

— — N
T mT we-v@ ! Va(T) = NIH(T)
! I Qu@) =PR(@Q) UoN  Qu@) =nR(T)

— = — —
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Strategy 2 : Different FEM space

Use a higher order space [WheelerYotov’06]

— — N
T mT we-v@ ! Vi(T) = NI (T)
! I Qu@) =PR(@Q) ey Q@) =pr(T)

— — — —

Lemma. MZ is block diagonal and thus also (MEX)~1.
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— — N
T mT we-v@ ! Vi(T) = NI (T)
! I Qu@) =PR(@Q) ey Q@) =pr(T)
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Lemma. MZ is block diagonal and thus also (MEX)~1.
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— — N
T mT we-v@ ! Vi(T) = NI (T)
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Lemma. MZ is block diagonal and thus also (MEX)~1.
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Strategy 2 : Different FEM space

Use a higher order space [WheelerYotov’06]

— — N
T mT we-v@ ! Vi(T) = NI (T)
! I Qu@) =PR(@Q) ey Q@) =pr(T)

— = — —

Lemma. MZ is block diagonal and thus also (MEX)~1.

3D Same theory applies for the following element
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Strategy 3 : Embedding quadrature (Inverse Lumping)

Idea : Use lowest order space V), to represent solution, compute update
in enriched space V4, and then project back to V},
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Strategy 3 : Embedding quadrature (Inverse Lumping)

Idea : Use lowest order space V), to represent solution, compute update
in enriched space V4, and then project back to V},

— — —

] T T N
e T=1-F 1N P?’Hk

— - —
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Strategy 3 : Embedding quadrature (Inverse Lumping)

Idea : Use lowest order space V), to represent solution, compute update
in enriched space V4, and then project back to V},

— R LR
e T=1-F 1N P?’Hﬁ

Formal representation of inverse mass matrix.

MH =P (ME)LPT
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Strategy 3 : Embedding quadrature (Inverse Lumping)

Idea : Use lowest order space V), to represent solution, compute update
in enriched space V4, and then project back to V},

— — —

] T T N
e T=1-F 1N P?’Hﬁ

— - —

Formal representation of inverse mass matrix.
ME) =P (M) PT

Note : The inverse is sparse, the corresponding mass matrix is full
Again: equivalence to FDTD for square elements.

» 2018 - Egger, Radu - A mass-lumped mixed finite element method
for Maxwell's equations
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Second order method

» 1997 - Elmkies, Joly - Elements finis d’arete et condensation de
masse pour les equations de Maxwell - le cas 2D

LN Vi(T) = NI(T) @ B = EJo(T) C P5(T)
2N Qn(T) = P(T)

The quadrature rule is exact for P3; polynomials.
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Second order method

» 1997 - Elmkies, Joly - Elements finis d’arete et condensation de
masse pour les equations de Maxwell - le cas 2D

N\ [+8]

The quadrature rule is exact for P3; polynomials.

New proposal :

NS E NI() € Pu(T)
Qh P(T)

The quadrature rule is exact for P, polynomials ... but is this enough ?.
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Short notes on the analysis

Classic requirement of exactness
The quadrature rule has to be exact for Py(T)¢ x V;,(T)

New requirements

(i) There exists a splitting Vj, = Vi, (T) & W(T) s.t.
dim(W(T)) = dim(curl W(T))

(i7) The quadrature rule is exact for Py (T)% x V;,(T)
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The quadrature rule has to be exact for Py(T)¢ x V;,(T)

New requirements

(i) There exists a splitting Vi, = V,,(T) & W(T) s.t.
dim(W(T)) = dim(curl W(T))

(ii) The quadrature rule is exact for Py (T)? x V,(T)

Lemma (accuracy)
If E and H are sufficiently smooth. Then

IE(t) = En(@®)] + [|H(t) — Hu(t)]| < C?
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Second order method - 3D

» 1997 - Elmkies, Joly - Elements finis d’arete et condensation de
masse pour les equations de Maxwell - le cas 3D

Vi(T) = N(T) C Po(T)
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Second order method - 3D
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Second order method - 3D

» 1997 - Elmkies, Joly - Elements finis d’arete et condensation de
masse pour les equations de Maxwell - le cas 3D

Vi(T) = N{(T) & B(T) C Ps(T)

Interior basis functions

D= VA Do = MV
D3 = MV Dy = Aol V.

But V()\l)\z)\g)\4) = 51 + 52 + &)3 + (54 — curl(ffl + &32 + (53 + &)4) =0

Solution R
Modify one basis function, for example @4 = A A2A3(A2 — A1 + 1)V Ay
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Second order method - 3D

» 1997 - Elmkies, Joly - Elements finis d’arete et condensation de
masse pour les equations de Maxwell - le cas 3D

Vi(T) = N{(T) & B(T) C Ps(T)

Lemma (accuracy)
If £ and H are sufficiently smooth. Then

IE(t) — En(t)]| + [|H(t) — Ha(t)]| < Ch?
Note
Numerical experiments suggest the unmodified method yields second

order convergence as well, but it does not fit our theory
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Extension to even higher orders

We look for Gauss-Lobatto type quadrature rules !
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Extension to even higher orders

We look for Gauss-Lobatto type quadrature rules !




Closing remarks

» The discontinuous Galerkin method does outperform mass lumping
for high orders.
2018 - Geevers, Mulder, Vegt - New higher-order mass-lumped tetrahedral

elements for wave propagation modelling

» Easier to define quadrature formulas on quadrilateral meshes
because of tensor product structure (still not optimal!)

> "Gauss-Lobatto” quadrature rules on triangles/tetrahedra not known
for arbitrary orders.
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Closing remarks

» The discontinuous Galerkin method does outperform mass lumping
for high orders.

2018 - Geevers, Mulder, Vegt - New higher-order mass-lumped tetrahedral

elements for wave propagation modelling

» Easier to define quadrature formulas on quadrilateral meshes
because of tensor product structure (still not optimal!)

> "Gauss-Lobatto” quadrature rules on triangles/tetrahedra not known
for arbitrary orders.

Short recap

» We introduced several mass-lumped mixed finite element
approximations for Maxwell's equations (lowest order)

» Developed weaker conditions on the exactness of the quadrature
formula and extended the method to second order approximations
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