# Mass-lumped finite element method for Maxwell's equations

#### Herbert Egger, Bogdan Radu

Technische Universität Darmstadt

October 20, 2022

MS11: Numerical methods for wave propagation with applications in electromagnetics and geophysics

Electromagnetic wave propagation in linear and non-dispersive but possibly inhomogeneous and anisotropic media

$$\begin{split} \varepsilon \, \partial_t E(t) &= \quad \text{curl} \; H(t) - \sigma E(t) \\ \mu \, \partial_t H(t) &= -\text{curl} \; E(t) \end{split}$$

in  $\Omega$ , with  $E(0) = E_0$  and  $H(0) = H_0$  in  $\Omega$  and  $n \times E(t) = 0$  on  $\partial \Omega$ 

Electromagnetic wave propagation in linear and non-dispersive but possibly inhomogeneous and anisotropic media

 $\varepsilon \partial_t E(t) = \operatorname{curl} H(t) - \sigma E(t)$  $\mu \partial_t H(t) = -\operatorname{curl} E(t)$ 

in  $\Omega$ , with  $E(0) = E_0$  and  $H(0) = H_0$  in  $\Omega$  and  $n \times E(t) = 0$  on  $\partial \Omega$ 

Goal: systematic and flexible space discretization

- stable: no artificial energy production
- accurate: provable convergence rates
- efficient: appropriate for explicit time-stepping methods

Methods: FDTD/FIT, FEM, FVM, DG, ...

## Finite element method

$$\varepsilon \partial_t E(t) = \operatorname{curl} H(t) - \sigma E(t)$$
  
 $\mu \partial_t H(t) = -\operatorname{curl} E(t)$ 

## Finite element method

$$\varepsilon \partial_t E(t) = \operatorname{curl} H(t) - \sigma E(t)$$
  
 $\mu \partial_t H(t) = -\operatorname{curl} E(t)$ 

$$\varepsilon \partial_t E(t) = \operatorname{curl} H(t) - \sigma E(t)$$
  
 $\mu \partial_t H(t) = -\operatorname{curl} E(t)$ 

Approximation spaces:  $V_h \subset H_0(\operatorname{curl}; \Omega)$  and  $Q_h \subset L^2(\Omega)$ 

**Galerkin method:** For t > 0, find  $E_h(t) \in V_h$  and  $H_h(t) \in Q_h$  such that

$$(\epsilon \partial_t E_h(t), v_h)_{\Omega} - (H_h(t), \operatorname{curl} v_h)_{\Omega} = 0$$
  
$$(\mu \partial_t H_h(t), q_h)_{\Omega} + (\operatorname{curl} E_h(t), q_h)_{\Omega} = 0$$

for all test functions  $v_h \in V_h$  and  $q_h \in Q_h$ , and for all t > 0.

$$\varepsilon \partial_t E(t) = \operatorname{curl} H(t) - \sigma E(t)$$
  
 $\mu \partial_t H(t) = -\operatorname{curl} E(t)$ 

Approximation spaces:  $V_h \subset H_0(\operatorname{curl}; \Omega)$  and  $Q_h \subset L^2(\Omega)$ 

**Galerkin method:** For t > 0, find  $E_h(t) \in V_h$  and  $H_h(t) \in Q_h$  such that

$$(\epsilon \partial_t E_h(t), v_h)_{\Omega} - (H_h(t), \operatorname{curl} v_h)_{\Omega} = 0$$
  
$$(\mu \partial_t H_h(t), q_h)_{\Omega} + (\operatorname{curl} E_h(t), q_h)_{\Omega} = 0$$

for all test functions  $v_h \in V_h$  and  $q_h \in Q_h$ , and for all t > 0.

Algebraic realization.

$$\mathbf{M}_{\epsilon}\partial_{t}\mathbf{e}(t) - \mathbf{C}^{\top}\mathbf{h}(t) = 0$$
  
$$\mathbf{D}_{\mu}\partial_{t}\mathbf{h}(t) + \mathbf{C}\mathbf{e}(t) = 0$$

### First order elements

Finite element spaces on reference elements.



### First order elements

Finite element spaces on reference elements.



Note: Construction for "physical" elements Q or T by Piola-transform

### First order elements

Finite element spaces on reference elements.



**Note:** Construction for "physical" elements Q or T by Piola-transform **Lemma (accuracy) [EggerRadu'18,DupontKeenan'98,LiBank'18].** If E and H are sufficiently smooth. Then

$$||E(t) - E_h(t)|| + ||H(t) - H_h(t)|| \le Ch$$

By duality argument, one can show super-convergence (ONLY 2D)

$$\|\Pi_h^0 H(t) - H_h(t)\| \le Ch^2$$

#### Stability and accuracy.

Lowest order MFEM yields stable and accurate approximation in space.

#### Stability and accuracy.

Lowest order MFEM yields stable and accurate approximation in space.

Numerical solution. Time integration of resulting ode system

$$\mathbf{M}_{\epsilon}\partial_{t}\mathbf{e}(t) - \mathbf{C}^{\top}\mathbf{h}(t) = 0$$
  
$$\mathbf{D}_{\mu}\partial_{t}\mathbf{h}(t) + \mathbf{C}\mathbf{e}(t) = 0$$

by explicit schemes requires application of  $\mathbf{M}_{\epsilon}^{-1}$  and  $\mathbf{D}_{\mu}^{-1}$ .

#### Stability and accuracy.

Lowest order MFEM yields stable and accurate approximation in space.

Numerical solution. Time integration of resulting ode system

$$\mathbf{M}_{\epsilon}\partial_{t}\mathbf{e}(t) - \mathbf{C}^{\top}\mathbf{h}(t) = 0$$
  
$$\mathbf{D}_{\mu}\partial_{t}\mathbf{h}(t) + \mathbf{C}\mathbf{e}(t) = 0$$

by explicit schemes requires application of  $\mathbf{M}_{\epsilon}^{-1}$  and  $\mathbf{D}_{\mu}^{-1}.$ 

**Note.** Here  $D_{\mu}$  diagonal, but  $M_{\epsilon}$  does not have a sparse inverse! Thus, explicit time-stepping for standard MFEM is not efficient.

#### Stability and accuracy.

Lowest order MFEM yields stable and accurate approximation in space.

Numerical solution. Time integration of resulting ode system

$$\mathbf{M}_{\epsilon}\partial_{t}\mathbf{e}(t) - \mathbf{C}^{\top}\mathbf{h}(t) = 0$$
  
$$\mathbf{D}_{\mu}\partial_{t}\mathbf{h}(t) + \mathbf{C}\mathbf{e}(t) = 0$$

by explicit schemes requires application of  $\mathbf{M}_{\epsilon}^{-1}$  and  $\mathbf{D}_{\mu}^{-1}$ .

**Note.** Here  $D_{\mu}$  diagonal, but  $M_{\epsilon}$  does not have a sparse inverse! Thus, explicit time-stepping for standard MFEM is not efficient.

**Remedy – Mass-lumping:** replace  $\mathbf{M}_{\epsilon}$  by approximation  $\mathbf{M}_{\epsilon}^{L}$  such that

- $\mathbf{M}_{\epsilon}^{L}$  corresponds to positive definite matrix (stability)
- $\mathbf{M}_{\epsilon}^{L}$  is good approximation for  $\mathbf{M}_{\epsilon}$  (accuracy)
- $(\mathbf{M}_{\epsilon}^{L})^{-1}$  can be applied efficiently (efficiency)

construction of  $\mathbf{M}_{\epsilon}^{L}$  usually via numerical quadrature; see [Cohen'02].

## Mass lumping literature

- 1990 Lee, Madsen A mixed FEM formulation for Maxwell's equations in the time domain
- 1995 Cohen, Monk Mass lumped edge elements in three dimensions
- 1997 Elmkies, Joly Elements finis d'arete et condensation de masse pour les equations de Maxwell le cas 3D
- 1998 Cohen, Monk Gauss Point Mass Lumping Schemes for Maxwell's Equations
- 1999 Kong, Mulder, Veldhuizen Higher-order triangular and tetrahedral finite elements with mass lumping for solving the wave equation
- 2000 Becache, Joly, Tsogka An analysis of new mixed finite elements for the approximation of wave propagation models
- 2001 Mulder Higher-order mass-lumped finite elements for the wave equation
- 2018 Geevers, Mulder, Vegt New higher-order mass-lumped tetrahedral elements for wave propagation modelling
- 2018 Egger, Radu A mass-lumped mixed finite element method for acoustic wave propagation
- 2018 Egger, Radu A mass-lumped mixed finite element method for Maxwell's equations

## Observation



## Observation

| $\uparrow \boxed{\circ} \uparrow$ | $V_h(\widehat{Q}) = \mathcal{N}_0^I(\widehat{Q})$ $Q_h(\widehat{Q}) = P_0(\widehat{Q})$ | $\phi_1 = (1 - y, 0)$<br>$\phi_2 = (y, 0)$  | $\phi_3 = (0, 1 - x)$<br>$\phi_4 = (0, x)$ |
|-----------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------|
|                                   | $V_h(\widehat{T}) = \mathcal{N}_0^I(\widehat{T})$ $Q_h(\widehat{T}) = P_0(\widehat{T})$ | $\phi_1 = (1 - y, x)$<br>$\phi_2 = (-y, x)$ | $\phi_3 = (y, 1 - x)$                      |

**Observation:** No "good" quadrature rule that leads to decoupling of entries in mass matrix for  $V_h$ .

One existing method : acute mesh lumping

1996 - Baranger - Connection between finite volume and mixed finite element methods

## Strategy 1 : Extended finite element space

Add additional interior basis functions [ElmkiesJoly'93].



#### Numerical Integration

Use the midpoint rule, which is exact for  $P_2$  functions.

## Strategy 1 : Extended finite element space

Add additional interior basis functions [ElmkiesJoly'93].



#### Numerical Integration

Use the midpoint rule, which is exact for  $P_2$  functions.

#### **Exactness requirement**

The quadrature rule should be exact for  $P_k \times V_h$ , k = 0 for the first order case

## Strategy 1 : Extended finite element space

Add additional interior basis functions [ElmkiesJoly'93].



#### Numerical Integration

Use the midpoint rule, which is exact for  $P_2$  functions.

#### Lemma (accuracy)

If E and H are sufficiently smooth. Then

$$||E(t) - E_h(t)|| + ||H(t) - H_h(t)|| \le Ch$$

Use a higher order space [WheelerYotov'06]



Use a higher order space [WheelerYotov'06]



Lemma.  $\widetilde{M}^L_\epsilon$  is block diagonal and thus also  $(\widetilde{M}^L_\epsilon)^{-1}$ .

Use a higher order space [WheelerYotov'06]





**Lemma.**  $\widetilde{M}^L_{\epsilon}$  is block diagonal and thus also  $(\widetilde{M}^L_{\epsilon})^{-1}$ .



Use a higher order space [WheelerYotov'06]





Lemma.  $\widetilde{M}^L_\epsilon$  is block diagonal and thus also  $(\widetilde{M}^L_\epsilon)^{-1}$ .

#### **Lemma (accuracy)** If E and H are sufficiently smooth. Then

|| T(t) = T(t) || + || T(t) = T(t)

$$|E(t) - E_h(t)|| + ||H(t) - H_h(t)|| \le Ch$$

Use a higher order space [WheelerYotov'06]



**Lemma.**  $\widetilde{M}^L_\epsilon$  is block diagonal and thus also  $(\widetilde{M}^L_\epsilon)^{-1}$ .

 ${\bf 3D}$  Same theory applies for the following element



**Idea :** Use lowest order space  $V_h$  to represent solution, compute update in enriched space  $\widetilde{V}_h$ , and then project back to  $V_h$ 

**Idea :** Use lowest order space  $V_h$  to represent solution, compute update in enriched space  $\widetilde{V}_h$ , and then project back to  $V_h$ 



**Idea** : Use lowest order space  $V_h$  to represent solution, compute update in enriched space  $\widetilde{V}_h$ , and then project back to  $V_h$ 



Formal representation of inverse mass matrix.

 $(\mathbf{M}_{\epsilon}^{L})^{-1} = \mathbf{P} \; (\widetilde{\mathbf{M}}_{\epsilon}^{L})^{-1} \; \mathbf{P}^{\top}$ 

**Idea** : Use lowest order space  $V_h$  to represent solution, compute update in enriched space  $\widetilde{V}_h$ , and then project back to  $V_h$ 



Formal representation of inverse mass matrix.

$$(\mathbf{M}_{\epsilon}^{L})^{-1} = \mathbf{P} \; (\widetilde{\mathbf{M}}_{\epsilon}^{L})^{-1} \; \mathbf{P}^{\top}$$

**Note :** The inverse is sparse, the corresponding mass matrix is full Again: equivalence to FDTD for square elements.

2018 - Egger, Radu - A mass-lumped mixed finite element method for Maxwell's equations

## Second order method



The quadrature rule is exact for  $P_3$  polynomials.

## Second order method



The quadrature rule is exact for  $P_3$  polynomials.

New proposal :

The quadrature rule is exact for  $P_2$  polynomials ... but is this enough ?.

## Short notes on the analysis

#### **Classic requirement of exactness**

The quadrature rule has to be exact for  $P_1(T)^d \times V_h(T)$ 

#### New requirements

- (i) There exists a splitting  $V_h = \widetilde{V}_h(T) \oplus W(T)$  s.t.  $\dim(W(T)) = \dim(\operatorname{curl} W(T))$
- (ii) The quadrature rule is exact for  $P_1(T)^d \times \widetilde{V}_h(T)$

## Short notes on the analysis

#### **Classic requirement of exactness**

The quadrature rule has to be exact for  $P_1(T)^d \times V_h(T)$ 

#### New requirements

- (i) There exists a splitting  $V_h = \widetilde{V}_h(T) \oplus W(T)$  s.t.  $\dim(W(T)) = \dim(\operatorname{curl} W(T))$
- (ii) The quadrature rule is exact for  $P_1(T)^d imes \widetilde{V}_h(T)$

#### Lemma (accuracy)

If E and H are sufficiently smooth. Then

$$||E(t) - E_h(t)|| + ||H(t) - H_h(t)|| \le Ch^2$$

1997 - Elmkies, Joly - Elements finis d'arete et condensation de masse pour les equations de Maxwell - le cas 3D



$$V_h(\widehat{T}) = \mathcal{N}_1^I(\widehat{T}) \subseteq P_2(\widehat{T})$$





The quadrature rule is exact for  $P_3$  polynomials

1997 - Elmkies, Joly - Elements finis d'arete et condensation de masse pour les equations de Maxwell - le cas 3D



$$V_h(\widehat{T}) = \mathcal{N}_1^I(\widehat{T}) \oplus B(\widehat{T}) \subseteq P_3(\widehat{T})$$

Interior basis functions

$$\begin{split} \widehat{\Phi}_1 &= \lambda_2 \lambda_3 \lambda_4 \nabla \lambda_1 \qquad \widehat{\Phi}_2 &= \lambda_1 \lambda_3 \lambda_4 \nabla \lambda_2 \\ \widehat{\Phi}_3 &= \lambda_1 \lambda_2 \lambda_4 \nabla \lambda_3 \qquad \widehat{\Phi}_4 &= \lambda_1 \lambda_2 \lambda_3 \nabla \lambda_4. \end{split}$$

1997 - Elmkies, Joly - Elements finis d'arete et condensation de masse pour les equations de Maxwell - le cas 3D



$$\mathcal{N}_h(\widehat{T}) = \mathcal{N}_1^I(\widehat{T}) \oplus B(\widehat{T}) \subseteq P_3(\widehat{T})$$

Interior basis functions

$$\widehat{\Phi}_1 = \lambda_2 \lambda_3 \lambda_4 \nabla \lambda_1 \qquad \widehat{\Phi}_2 = \lambda_1 \lambda_3 \lambda_4 \nabla \lambda_2 \widehat{\Phi}_3 = \lambda_1 \lambda_2 \lambda_4 \nabla \lambda_3 \qquad \widehat{\Phi}_4 = \lambda_1 \lambda_2 \lambda_3 \nabla \lambda_4.$$

 $\mathsf{But}\ \nabla(\lambda_1\lambda_2\lambda_3\lambda_4) = \widetilde{\Phi}_1 + \widetilde{\Phi}_2 + \widetilde{\Phi}_3 + \widetilde{\Phi}_4 \to \operatorname{curl}(\widetilde{\Phi}_1 + \widetilde{\Phi}_2 + \widetilde{\Phi}_3 + \widetilde{\Phi}_4) = 0$ 

1997 - Elmkies, Joly - Elements finis d'arete et condensation de masse pour les equations de Maxwell - le cas 3D



$$\mathcal{N}_h(\widehat{T}) = \mathcal{N}_1^I(\widehat{T}) \oplus B(\widehat{T}) \subseteq P_3(\widehat{T})$$

Interior basis functions

$$\widehat{\Phi}_1 = \lambda_2 \lambda_3 \lambda_4 \nabla \lambda_1 \qquad \widehat{\Phi}_2 = \lambda_1 \lambda_3 \lambda_4 \nabla \lambda_2 \widehat{\Phi}_3 = \lambda_1 \lambda_2 \lambda_4 \nabla \lambda_3 \qquad \widehat{\Phi}_4 = \lambda_1 \lambda_2 \lambda_3 \nabla \lambda_4.$$

 $\mathsf{But}\ \nabla(\lambda_1\lambda_2\lambda_3\lambda_4) = \widetilde{\Phi}_1 + \widetilde{\Phi}_2 + \widetilde{\Phi}_3 + \widetilde{\Phi}_4 \to \operatorname{curl}(\widetilde{\Phi}_1 + \widetilde{\Phi}_2 + \widetilde{\Phi}_3 + \widetilde{\Phi}_4) = 0$ 

#### Solution

Modify one basis function, for example  $\widehat{\Phi}_4 = \lambda_1 \lambda_2 \lambda_3 (\lambda_2 - \lambda_1 + 1) \nabla \lambda_4$ 

1997 - Elmkies, Joly - Elements finis d'arete et condensation de masse pour les equations de Maxwell - le cas 3D



$$V_h(\widehat{T}) = \mathcal{N}_1^I(\widehat{T}) \oplus B(\widehat{T}) \subseteq P_3(\widehat{T})$$

Lemma (accuracy) If E and H are sufficiently smooth. Then

$$||E(t) - E_h(t)|| + ||H(t) - H_h(t)|| \le Ch^2$$

#### Note

Numerical experiments suggest the unmodified method yields second order convergence as well, but it does not fit our theory

## Extension to even higher orders

We look for Gauss-Lobatto type quadrature rules !



# Extension to even higher orders

We look for Gauss-Lobatto type quadrature rules !





## Closing remarks

 The discontinuous Galerkin method does outperform mass lumping for high orders.
2018 - Geevers, Mulder, Vegt - New higher-order mass-lumped tetrahedral

elements for wave propagation modelling

- Easier to define quadrature formulas on quadrilateral meshes because of tensor product structure (still not optimal!)
- "Gauss-Lobatto" quadrature rules on triangles/tetrahedra not known for arbitrary orders.

## Closing remarks

 The discontinuous Galerkin method does outperform mass lumping for high orders.
2018 - Geevers, Mulder, Vegt - New higher-order mass-lumped tetrahedral

elements for wave propagation modelling

- Easier to define quadrature formulas on quadrilateral meshes because of tensor product structure (still not optimal!)
- "Gauss-Lobatto" quadrature rules on triangles/tetrahedra not known for arbitrary orders.

Short recap

- We introduced several mass-lumped mixed finite element approximations for Maxwell's equations (lowest order)
- Developed weaker conditions on the exactness of the quadrature formula and extended the method to second order approximations