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Maxwell’s equations

Electromagnetic wave propagation in linear and non-dispersive but
possibly inhomogeneous and anisotropic media

ε ∂tE(t) = curl H(t)− σE(t)

µ∂tH(t) = −curl E(t)

in Ω, with E(0) = E0 and H(0) = H0 in Ω and n× E(t) = 0 on ∂Ω

Goal: systematic and flexible space discretization

I stable: no artificial energy production

I accurate: provable convergence rates

I efficient: appropriate for explicit time-stepping methods

Methods: FDTD/FIT, FEM, FVM, DG, . . .
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Finite element method

ε ∂tE(t) = curl H(t)− σE(t)

µ∂tH(t) = −curl E(t)

Approximation spaces: Vh ⊂ H0(curl; Ω) and Qh ⊂ L2(Ω)

Galerkin method: For t > 0, find Eh(t) ∈ Vh and Hh(t) ∈ Qh such that

(ε∂tEh(t), vh)Ω − (Hh(t), curl vh)Ω = 0

(µ∂tHh(t), qh)Ω + (curl Eh(t), qh)Ω = 0

for all test functions vh ∈ Vh and qh ∈ Qh, and for all t > 0.

Algebraic realization.

Mε∂te(t)−C>h(t) = 0

Dµ∂th(t) + C e(t) = 0
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First order elements

Finite element spaces on reference elements.

Vh(Q̂) = N I
0 (Q̂)

Qh(Q̂) = P0(Q̂)

φ1 = (1− y, 0) φ3 = (0, 1− x)
φ2 = (y, 0) φ4 = (0, x)

Vh(T̂ ) = N I
0 (T̂ )

Qh(T̂ ) = P0(T̂ )

φ1 = (1− y, x) φ3 = (y, 1− x)
φ2 = (−y, x)

Note: Construction for “physical” elements Q or T by Piola-transform

Lemma (accuracy) [EggerRadu’18,DupontKeenan’98,LiBank’18].
If E and H are sufficiently smooth. Then

‖E(t)− Eh(t)‖+ ‖H(t)−Hh(t)‖ ≤ Ch

By duality argument, one can show super-convergence (ONLY 2D)

‖Π0
hH(t)−Hh(t)‖ ≤ Ch2
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Lowest order elements

Stability and accuracy.
Lowest order MFEM yields stable and accurate approximation in space.

Numerical solution. Time integration of resulting ode system

Mε∂te(t)−C>h(t) = 0

Dµ∂th(t) + C e(t) = 0

by explicit schemes requires application of M−1
ε and D−1

µ .

Note. Here Dµ diagonal, but Mε does not have a sparse inverse!
Thus, explicit time-stepping for standard MFEM is not efficient.

Remedy – Mass-lumping: replace Mε by approximation ML
ε such that

I ML
ε corresponds to positive definite matrix (stability)

I ML
ε is good approximation for Mε (accuracy)

I (ML
ε )−1 can be applied efficiently (efficiency)

construction of ML
ε usually via numerical quadrature; see [Cohen’02].
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Mass lumping literature

I 1990 - Lee, Madsen - A mixed FEM formulation for Maxwell’s equations in the
time domain

I 1995 - Cohen, Monk - Mass lumped edge elements in three dimensions

I 1997 - Elmkies, Joly - Elements finis d’arete et condensation de masse pour les
equations de Maxwell - le cas 3D

I 1998 - Cohen, Monk - Gauss Point Mass Lumping Schemes for Maxwell’s
Equations

I 1999 - Kong, Mulder, Veldhuizen - Higher-order triangular and tetrahedral finite
elements with mass lumping for solving the wave equation

I 2000 - Becache, Joly, Tsogka - An analysis of new mixed finite elements for the
approximation of wave propagation models

I 2001 - Mulder - Higher-order mass-lumped finite elements for the wave equation

I 2018 - Geevers, Mulder, Vegt - New higher-order mass-lumped tetrahedral
elements for wave propagation modelling

I 2018 - Egger, Radu - A mass-lumped mixed finite element method for acoustic
wave propagation

I 2018 - Egger, Radu - A mass-lumped mixed finite element method for Maxwell’s
equations
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Observation

Vh(Q̂) = N I
0 (Q̂)

Qh(Q̂) = P0(Q̂)

φ1 = (1− y, 0) φ3 = (0, 1− x)
φ2 = (y, 0) φ4 = (0, x)

Vh(T̂ ) = N I
0 (T̂ )

Qh(T̂ ) = P0(T̂ )

φ1 = (1− y, x) φ3 = (y, 1− x)
φ2 = (−y, x)

Observation: No ”good” quadrature rule that leads to decoupling of
entries in mass matrix for Vh.

One existing method : acute mesh lumping

I 1996 - Baranger - Connection between finite volume and mixed
finite element methods
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Strategy 1 : Extended finite element space

Add additional interior basis functions [ElmkiesJoly’93].

Vh(Q̂) = N I
0 (Q̂)⊕B = EJ1(Q̂) ⊆ P2(Q̂)

Qh(Q̂) = P1(Q̂)

Vh(T̂ ) = N I
0 (T̂ )⊕B = EJ1(T̂ ) ⊆ P2(T̂ )

Qh(T̂ ) = P1(T̂ )

Numerical Integration
Use the midpoint rule, which is exact for P2 functions.
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Numerical Integration
Use the midpoint rule, which is exact for P2 functions.

Exactness requirement
The quadrature rule should be exact for Pk × Vh, k = 0 for the first order
case
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Strategy 2 : Different FEM space

Use a higher order space [WheelerYotov’06]

Vh(Q̂) = N II
1 (Q̂)

Qh(Q̂) = P0(Q̂)

Vh(T̂ ) = N II
1 (T̂ )

Qh(T̂ ) = P0(T̂ )

Lemma. M̃L
ε is block diagonal and thus also (M̃L

ε )−1.
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Strategy 3 : Embedding quadrature (Inverse Lumping)

Idea : Use lowest order space Vh to represent solution, compute update
in enriched space Ṽh, and then project back to Vh

P>

P

P>

P

Formal representation of inverse mass matrix.

(ML
ε )−1 = P (M̃L

ε )−1 P>

Note : The inverse is sparse, the corresponding mass matrix is full
Again: equivalence to FDTD for square elements.

I 2018 - Egger, Radu - A mass-lumped mixed finite element method
for Maxwell’s equations
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Second order method

I 1997 - Elmkies, Joly - Elements finis d’arete et condensation de
masse pour les equations de Maxwell - le cas 2D

+8
Vh(T̂ ) = N I

1 (T̂ )⊕B = EJ2(T̂ ) ⊆ P3(T̂ )

Qh(T̂ ) = P2(T̂ )

The quadrature rule is exact for P3 polynomials.

New proposal :

+2
Vh(T̂ ) = N I

1 (T̂ ) ⊆ P2(T̂ )

Qh(T̂ ) = P1(T̂ )

The quadrature rule is exact for P2 polynomials ... but is this enough ?.
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Short notes on the analysis

Classic requirement of exactness
The quadrature rule has to be exact for P1(T )d × Vh(T )

New requirements

(i) There exists a splitting Vh = Ṽh(T )⊕W (T ) s.t.
dim(W (T )) = dim(curlW (T ))

(ii) The quadrature rule is exact for P1(T )d × Ṽh(T )

Lemma (accuracy)
If E and H are sufficiently smooth. Then

‖E(t)− Eh(t)‖+ ‖H(t)−Hh(t)‖ ≤ Ch2

12 / 17



Short notes on the analysis

Classic requirement of exactness
The quadrature rule has to be exact for P1(T )d × Vh(T )

New requirements

(i) There exists a splitting Vh = Ṽh(T )⊕W (T ) s.t.
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Second order method - 3D

I 1997 - Elmkies, Joly - Elements finis d’arete et condensation de
masse pour les equations de Maxwell - le cas 3D

Vh(T̂ ) = N I
1 (T̂ ) ⊆ P2(T̂ )

Vh(T̂ ) = N I
1 (T̂ )⊕B(T̂ ) ⊆ P3(T̂ )

The quadrature rule is exact for P3 polynomials
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Second order method - 3D

I 1997 - Elmkies, Joly - Elements finis d’arete et condensation de
masse pour les equations de Maxwell - le cas 3D

Vh(T̂ ) = N I
1 (T̂ )⊕B(T̂ ) ⊆ P3(T̂ )

Interior basis functions

Φ̂1 = λ2λ3λ4∇λ1 Φ̂2 = λ1λ3λ4∇λ2

Φ̂3 = λ1λ2λ4∇λ3 Φ̂4 = λ1λ2λ3∇λ4.

But ∇(λ1λ2λ3λ4) = Φ̃1 + Φ̃2 + Φ̃3 + Φ̃4 → curl(Φ̃1 + Φ̃2 + Φ̃3 + Φ̃4) = 0

Solution
Modify one basis function, for example Φ̂4 = λ1λ2λ3(λ2 − λ1 + 1)∇λ4
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Second order method - 3D

I 1997 - Elmkies, Joly - Elements finis d’arete et condensation de
masse pour les equations de Maxwell - le cas 3D

Vh(T̂ ) = N I
1 (T̂ )⊕B(T̂ ) ⊆ P3(T̂ )

Lemma (accuracy)
If E and H are sufficiently smooth. Then

‖E(t)− Eh(t)‖+ ‖H(t)−Hh(t)‖ ≤ Ch2

Note
Numerical experiments suggest the unmodified method yields second
order convergence as well, but it does not fit our theory
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Extension to even higher orders

We look for Gauss-Lobatto type quadrature rules !
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Closing remarks

I The discontinuous Galerkin method does outperform mass lumping
for high orders.
2018 - Geevers, Mulder, Vegt - New higher-order mass-lumped tetrahedral

elements for wave propagation modelling

I Easier to define quadrature formulas on quadrilateral meshes
because of tensor product structure (still not optimal!)

I ”Gauss-Lobatto” quadrature rules on triangles/tetrahedra not known
for arbitrary orders.

Short recap

I We introduced several mass-lumped mixed finite element
approximations for Maxwell’s equations (lowest order)

I Developed weaker conditions on the exactness of the quadrature
formula and extended the method to second order approximations
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