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Motivation and existing methods

ou+Vp=0 inQx (0, 7),
op+divu=0 inQ x (0, T),
p=20 on 92 x (0, T).

with Q CRY, d =2, 3.
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Motivation and existing methods

Finite differences try [Yee 66]

oy + Bxp = 0,
Otlo + Byp = 0,
(91[3 + OxUy + 8yU2 =0.
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Motivation and existing methods

Finite differences try [Yee 66]

Oy + 0xp =0, Letb
Otlo + Byp = 0,
8tp + OxUy + 8yU2 =0.
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Motivation and existing methods

Finite differences try [Yee 66] .
—->l—->
1 T
Pe-—e—1re1>
-+
atU1 +8xp == 0, —-);—-)
O+ 8yp =0, '
8tp + OxUy + 8yU2 =0.
Pros Cons
» Easy to implement
» Fast » Difficulties in dealing with

» Optimal convergence complex domains
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Motivation and existing methods

Important observation : For a structured mesh, the finite difference method is
equivalent to a modified mixed finite element method [Cohen, Monk 97].

Can we develop a similar method on triangular meshes
that is fast and has optimal convergence ?
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A new method
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A new method

ou+Vp=0 inQx (0, 7),
op+divu=0 inQ x (0, T),
p=20 on 92 x (0, T).

Variational characterization
Find u(t) € H(div, ) and p(t) € L?(Q) such that

(Oeu(t), v) — (p(t),divv) =0 Vv e H(div,Q),
(@p(t), Q) + (divu(t),q) =0 Vg e L3(Q).
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A new method

ou+Vp=0 inQx (0, 7),
op+divu=0 inQ x (0, T),
p=20 on 92 x (0, T).

Galerkin discretization
Find ux(t) € Vi C H(div, Q) and px(t) € Q, C L3(RQ) such that

((9[Uh(1‘)7 Vh) — (ph(t),div Vh) =0 VYvye V,
(Otpn(t), Gn) + (div Un(t),gn) =0 Vah € Qh.

Vi = BDMy == P3(75) N H(div, Q) Qn = Po == Po(Th)
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A new method

(afuh(t)7 Vh) - (ph(t),le Vh) =0
(0tpn(1), gn) + (div us(t),gs) = 0

Algebraic system
A4 (lh = E;j_‘)h:: 0
Dpy+ Buy =0

Problem : Structure of matrix M

Yy € Vi,

van € Q.
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A new method

(f)zuh(t), Vh)h - (ph(t),div Vh) =0 YVvh € Vp,
(Otpn(t), gn) + (divun(t),gn) =0 VYgn € Qh.
Algebraic system
Mpuap — BTph: 0
Dpn+ Bu, =0

where (-, -)n is defined locally by

(U, Vi = ] Zuh X;)Vh(X;)

where {X;}i=1,2.3 represent the
vertices of the element.

This procedure is called MASS LUMPING !
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A new method

(aru,,(t), Vh) — (ph(t),div Vh) =0 Yvp € Vh,
(8{,0/7(1‘), qh) + (diV Uh(t), qh) =0 Yan € Q.

Representation of the degrees of freedom (left), structure of M~ (right)

f AW ol At
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T -+
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A new method

(Oeun(t), va)n — (ph(t),div Vh) =0 Yvh € Vh,
(Otpn(t), gn) + (divun(t),gn) =0 VYgn € Qh.

Representation of the degrees of freedom (left), structure of M, " (right)
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Analysis of the new method
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Analysis of the new method
Galerkin discretization
Find un(t) € Vi C H(div, Q) and ps(t) € Qn C L3(Q) such that

(Orun(t), va) — (Pn(t),divvy) =0 Vv, € Vi,
(Otpn(t), Gn) + (div un(t), gn) =0 Vg € Qh.

Semi-discrete error

lu(t) = un()l 2@y = OH?)  Ilmhp(t) = Pu(t)ll2i0) = O(H?)
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Analysis of the new method

Galerkin discretization
Find un(t) € Vi C H(div, Q) and ps(t) € Qn C L3(Q) such that

(Orun(t), va)h — (pu(t),divvy) =0 Vv, € Vi,
(Otpn(t), qn) + (divun(t),qn) =0 Van € Q.

Semi-discrete error

lu(t) = un(O)llizi@) = O(h)  lImap(t) = Pa()ll 2@y = O(H?)
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Analysis of the new method

Galerkin discretization
Find un(t) € Vi, C H(div, Q) and ps(t) € Qy C L3(Q) such that

(Orun(t), va)h — (pu(t),divvy) =0 Vv, € Vi,
(9epn(t), Gn) + (div un(t), gn) =0 Vagn € Q.
Semi-discrete error

lu(t) = un(O)llizi@) = O(h)  lImap(t) = Pa()ll 2@y = O(H?)

Mass lumping kills second order convergence !
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Analysis of the new method

Definition of a projection
Let the projection Muu(t) = Myu(0) + fot MNyo:u(s) ds be defined via

(Mpu(0), va)n — (fh(O)7 div Vh) = (U(O)7 Vh) YVvh € Vi,
(div MApu(0), gn) = (div u(0), gn) Van € Qp,

and  (Mpo:u(t), va)n — (rm(t),div v4) =0 YVh € Vi,
(diV I'I,,E),u(t), qh) = (diV atU(t), qh) van € Q.

Discrete error
Let Q be convex. For p,(0) = 7op(0) and ux(0) = Myu(0), we have

IMpu(t) — un()ll2(0) = O(h?) lmhp(t) — Pl 2(0) = o(h?)

Proof : use elliptic result of [Wheeler, Yotov 06]
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Analysis of the new method

Definition of a projection
Let the projection Muu(t) = Myu(0) + fO' MNyo:u(s) ds be defined via

(Mpu(0), va)n — (fh(O)7 div Vh) = (U(O)7 Vh) YVvh € Vi,
(div Msu(0), gn) = (div u(0),gn)  Van € Qn,

and (I"Ihatu(t), Vh)h = (rh(t),div Vh) =0 VVh c Vh,
(div Mpotu(t), gn) = (div oru(t), gn) Yan € Q.

Discrete error
Let Q be convex. For p,(0) = 7op(0) and ux(0) = Myu(0), we have

IMpu(t) — un()ll2(0) = O(h?) lmhp(t) — Pl 2(0) = o(h?)

Proof : use elliptic result of [Wheeler, Yotov 06]

The method contains second order information !
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Post-processing strategies for the new method
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Post-processing strategies for the new method

Problem
For all K € Tp, t > 0 find pa(t) € Pi(K) such that

(Vpn(t), Van)k = —(deun(t), Van)k  ¥an € Pi(K),
(Pn(1), an)k = (Pn(t), gn)k Yagn € Po(K).
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Post-processing strategies for the new method
Problem
For all K € Tn, t > 0 find pn(t) € Pi(K) such that

(Vpn(t), Van)k = —(deun(t), Van)k  ¥an € Pi(K),
(Pn(1), an)k = (Pn(t), gn)k Yagn € Po(K).

Theorem
Let Q be convex. Then

IP(t) = Pr()li2(0) = O(HP).

Idea from [Stenberg, 91]. Requirements for the proof :

Imhp(t) = Pa(D)l 20 = O(HP).
Only  [[8ru(t) — drun(t) ]l 20y = O(h).
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Post-processing strategies for the new method

Post-processing strategy for the velocity
For every 0 < t < T, find un(t) € Vi such that

(n(t), vi) — (Fa(t), div vin) = (Un(t), Vh)n
(div Un(1), gn) = (div un(t), gn)

Yvp € Vh7
Van € Q.
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Post-processing strategies for the new method

Post-processing strategy for the velocity
For every 0 < t < T, find un(t) € Vi such that

(Eh(t), Vh) — (7h(t),div Vh) = (Uh(l‘)7 Vh)h Yvh € Vp,
(div Eh(t), gn) = (div un(t), gn) Van € Qp.

Error estimate for the improved velocity

Let Q be convex. For ps(0) = 7op(0) and ux(0) = M,u(0) we have

lu(t) = Tn(8)ll () = O(H")
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Post-processing strategies for the new method

Post-processing strategy for the velocity
For every 0 < t < T, find un(t) € Vi such that

(Eh(t), Vh) — (Fh(t),div Vh) = (Uh(l‘)7 Vh)h Yvh € Vp,

(div Un(t), gn) = (div Un(t),gn)  Vgn € Q.

Error estimate for the improved velocity
Let Q be convex. For ps(0) = 7op(0) and ux(0) = M,u(0) we have

lu(t) = Tn(8)ll () = O(H")

Local in time, but global in space !
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Post-processing strategies for the new method
Galerkin discretization
Find un(t) € Vi C H(div, Q) and ps(t) € Qn C L3(Q) such that

(Orun(t), va)h — (pu(t),divvy) =0 Vv, € Vi,
(Otpn(t), qn) + (divun(t),qn) =0 Van € Q.

Full post-processing error
Let Q be convex. For pp(0) = 72p(0) and ux(0) = Myu(0) we have

llu(t) = (D)l iz + 1P(t) = Pa()l2(0) = O(HP).
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Numerical examples
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Numerical examples

We highlight the qualitative improvement obtained by post-processing by
means of the plane wave

Pressure py, (left), post-processed pressure py, (right)
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Numerical examples

We highlight the qualitative improvement obtained by post-processing by
means of the plane wave

First component of the velocity uj, (left), first component of the
post-processed velocity U, (right)
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Numerical examples

Convexity does not seem to be a necessary condition ...

Pressure py, (left), post-processed pressure py, (right)
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Summary
> We developed a mixed finite element method with mass lumping.

» We showed that the discrete solutions exhibit superconvergence with
respect to carefully defined projections of the true solutions.

> We proposed post-processing strategies for both variables.
For further details, refer to [Egger, Radu 18, arXiv:1803.04238]

Remarks
» Extension to the a fully discrete scheme by the explicit leapfrog scheme.
» Only for lowest order V,, = BDM; and Q = Po.
» The convexity condition could be further relaxed.
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Summary
> We developed a mixed finite element method with mass lumping.

» We showed that the discrete solutions exhibit superconvergence with
respect to carefully defined projections of the true solutions.

> We proposed post-processing strategies for both variables.
For further details, refer to [Egger, Radu 18, arXiv:1803.04238]

Remarks

» Extension to the a fully discrete scheme by the explicit leapfrog scheme.

» Only for lowest order V,, = BDM; and Q, = Po.
» The convexity condition could be further relaxed.

Thank you for your attention

Acknowledgement : The work of Bogdan Radu is supported by the ’Excellence Initiative’ of the
German Federal and State Governments and the Graduate School of Computational Engineering
at Technische Universitdt Darmstadt

17/17



	Motivation and existing methods
	A new method
	Analysis of the new method
	Post-processing strategies for the new method
	Numerical examples

