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Motivation and existing methods

∂tu +∇p = 0 in Ω× (0,T ),

∂tp + div u = 0 in Ω× (0,T ),

p = 0 on ∂Ω× (0,T ).

with Ω ⊆ Rd , d = 2, 3.
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Motivation and existing methods

Finite differences try [Yee 66]

∂tu1 + ∂x p = 0,

∂tu2 + ∂y p = 0,

∂tp + ∂x u1 + ∂y u2 = 0.

• •

•

•

•

Pros
I Easy to implement
I Fast
I Optimal convergence

Cons

I Difficulties in dealing with
complex domains

3 / 17



Motivation and existing methods

Finite differences try [Yee 66]

∂tu1 + ∂x p = 0,

∂tu2 + ∂y p = 0,

∂tp + ∂x u1 + ∂y u2 = 0.

• •

•

•

•

Pros
I Easy to implement
I Fast
I Optimal convergence

Cons

I Difficulties in dealing with
complex domains

3 / 17



Motivation and existing methods

Finite differences try [Yee 66]

∂tu1 + ∂x p = 0,

∂tu2 + ∂y p = 0,

∂tp + ∂x u1 + ∂y u2 = 0.

• •

•

•

•

Pros
I Easy to implement
I Fast
I Optimal convergence

Cons

I Difficulties in dealing with
complex domains

3 / 17



Motivation and existing methods

Finite differences try [Yee 66]

∂tu1 + ∂x p = 0,

∂tu2 + ∂y p = 0,

∂tp + ∂x u1 + ∂y u2 = 0.

• •

•

•

•

Pros
I Easy to implement
I Fast
I Optimal convergence

Cons

I Difficulties in dealing with
complex domains

3 / 17



Motivation and existing methods

Finite differences try [Yee 66]

∂tu1 + ∂x p = 0,

∂tu2 + ∂y p = 0,

∂tp + ∂x u1 + ∂y u2 = 0.

• •

•

•

•

Pros
I Easy to implement
I Fast
I Optimal convergence

Cons

I Difficulties in dealing with
complex domains

3 / 17



Motivation and existing methods

Important observation : For a structured mesh, the finite difference method is
equivalent to a modified mixed finite element method [Cohen, Monk 97].

Can we develop a similar method on triangular meshes
that is fast and has optimal convergence ?
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Motivation and existing methods

A new method

Analysis of the new method

Post-processing strategies for the new method

Numerical examples
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A new method

∂tu +∇p = 0 in Ω× (0,T ),

∂tp + div u = 0 in Ω× (0,T ),

p = 0 on ∂Ω× (0,T ).

Variational characterization
Find u(t) ∈ H(div ,Ω) and p(t) ∈ L2(Ω) such that

(∂tu(t), v)− (p(t), div v) = 0 ∀v ∈ H(div ,Ω),

(∂tp(t), q) + (div u(t), q) = 0 ∀q ∈ L2(Ω).
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A new method

∂tu +∇p = 0 in Ω× (0,T ),

∂tp + div u = 0 in Ω× (0,T ),

p = 0 on ∂Ω× (0,T ).

Galerkin discretization
Find uh(t) ∈ Vh ⊆ H(div ,Ω) and ph(t) ∈ Qh ⊆ L2(Ω) such that

(∂tuh(t), vh) − (ph(t), div vh) = 0 ∀vh ∈ Vh,

(∂tph(t), qh) + (div uh(t), qh) = 0 ∀qh ∈ Qh.

Vh = BDM1 := P2
1(Th) ∩ H(div ,Ω) Qh = P0 := P0(Th)
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A new method

(∂tuh(t), vh)− (ph(t), div vh) = 0 ∀vh ∈ Vh,

(∂tph(t), qh) + (div uh(t), qh) = 0 ∀qh ∈ Qh.

Algebraic system

M u̇h − B>ph= 0

D ṗh + B uh = 0

Problem : Structure of matrix M
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A new method

(∂tuh(t), vh)h − (ph(t), div vh) = 0 ∀vh ∈ Vh,

(∂tph(t), qh) + (div uh(t), qh) = 0 ∀qh ∈ Qh.

Algebraic system

Mh u̇h − B>ph= 0

D ṗh + B uh = 0

where (·, ·)h is defined locally by

(uh, vh)h,T :=
|T |
3

3∑
i=1

uh(xi )vh(xi )

where {xi}i=1,2,3 represent the
vertices of the element.

This procedure is called MASS LUMPING !
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A new method

(∂tuh(t), vh)− (ph(t), div vh) = 0 ∀vh ∈ Vh,

(∂tph(t), qh) + (div uh(t), qh) = 0 ∀qh ∈ Qh.

Representation of the degrees of freedom (left), structure of M−1 (right)
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Analysis of the new method

Galerkin discretization
Find uh(t) ∈ Vh ⊆ H(div ,Ω) and ph(t) ∈ Qh ⊆ L2(Ω) such that

(∂tuh(t), vh) − (ph(t), div vh) = 0 ∀vh ∈ Vh,

(∂tph(t), qh) + (div uh(t), qh) = 0 ∀qh ∈ Qh.

Semi-discrete error

‖u(t)− uh(t)‖L2(Ω) = O(h2) ‖π0
hp(t)− ph(t)‖L2(Ω) = O(h2)
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Analysis of the new method

Definition of a projection

Let the projection Πhu(t) = Πhu(0) +
∫ t

0 Πh∂tu(s) ds be defined via

(Πhu(0), vh)h − (rh(0), div vh) = (u(0), vh) ∀vh ∈ Vh,

(div Πhu(0), qh) = (div u(0), qh) ∀qh ∈ Qh,

and (Πh∂tu(t), vh)h − (rh(t), div vh) = 0 ∀vh ∈ Vh,

(div Πh∂tu(t), qh) = (div ∂tu(t), qh) ∀qh ∈ Qh.

Discrete error
Let Ω be convex. For ph(0) = π0

hp(0) and uh(0) = Πhu(0), we have

‖Πhu(t)− uh(t)‖L2(Ω) = O(h2) ‖π0
hp(t)− ph(t)‖L2(Ω) = O(h2)

Proof : use elliptic result of [Wheeler, Yotov 06]

The method contains second order information !
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Post-processing strategies for the new method

Problem
For all K ∈ Th, t > 0 find p̃h(t) ∈ P1(K ) such that

(∇p̃h(t),∇q̃h)K = −(∂tuh(t),∇q̃h)K ∀q̃h ∈ P1(K ),

(p̃h(t), qh)K = (ph(t), qh)K ∀qh ∈ P0(K ).

Theorem
Let Ω be convex. Then

‖p(t)− p̃h(t)‖L2(Ω) = O(h2).

Idea from [Stenberg, 91]. Requirements for the proof :

‖π0
hp(t)− ph(t)‖L2(Ω) = O(h2).

Only ‖∂tu(t)− ∂tuh(t)‖L2(Ω) = O(h).
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Post-processing strategies for the new method

Post-processing strategy for the velocity

For every 0 ≤ t ≤ T , find ũh(t) ∈ Vh such that

(ũh(t), vh)− (̃rh(t), div vh) = (uh(t), vh)h ∀vh ∈ Vh,

(div ũh(t), qh) = (div uh(t), qh) ∀qh ∈ Qh.

Error estimate for the improved velocity

Let Ω be convex. For ph(0) = π0
hp(0) and uh(0) = Πhu(0) we have

‖u(t)− ũh(t)‖L2(Ω) = O(h2)

Local in time, but global in space !
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Post-processing strategies for the new method

Galerkin discretization
Find uh(t) ∈ Vh ⊆ H(div ,Ω) and ph(t) ∈ Qh ⊆ L2(Ω) such that

(∂tuh(t), vh)h − (ph(t), div vh) = 0 ∀vh ∈ Vh,

(∂tph(t), qh) + (div uh(t), qh) = 0 ∀qh ∈ Qh.

Full post-processing error

Let Ω be convex. For ph(0) = π0
hp(0) and uh(0) = Πhu(0) we have

‖u(t)− ũh(t)‖L2(Ω) + ‖p(t)− p̃h(t)‖L2(Ω) = O(h2).
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Numerical examples

We highlight the qualitative improvement obtained by post-processing by
means of the plane wave

Pressure ph (left), post-processed pressure p̃h (right)
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Numerical examples

We highlight the qualitative improvement obtained by post-processing by
means of the plane wave

First component of the velocity uh (left), first component of the
post-processed velocity ũh (right)
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Numerical examples

Convexity does not seem to be a necessary condition ...

Pressure ph (left), post-processed pressure p̃h (right)
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Summary
I We developed a mixed finite element method with mass lumping.
I We showed that the discrete solutions exhibit superconvergence with

respect to carefully defined projections of the true solutions.
I We proposed post-processing strategies for both variables.

For further details, refer to [Egger, Radu 18, arXiv:1803.04238]

Remarks
I Extension to the a fully discrete scheme by the explicit leapfrog scheme.
I Only for lowest order Vh = BDM1 and Qh = P0.
I The convexity condition could be further relaxed.

Thank you for your attention
Acknowledgement : The work of Bogdan Radu is supported by the ’Excellence Initiative’ of the
German Federal and State Governments and the Graduate School of Computational Engineering
at Technische Universität Darmstadt
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