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Porous media modeling

Model equations for single-phase flow:

Conservation of mass Darcy’s law

divu = f u = −K∇p

Quantity of interest : p

Second order form

−div (K∇p) = f in Ω

p = 0 on ∂Ω.

(i) Discontinuous schemes (DFVM),
(DG) for local mass conservation

(ii) Not accurate for rough coeffi-
cients (local arithmetic averaging
of K)

Mixed form

K−1u +∇p = 0 in Ω

divu = f in Ω

p = 0 on ∂Ω.

(i) Handles rough coefficients better
(local harmonic averaging of K)

(ii) Have to solve a full saddle point
problem... or do you ? ⇒
MFMFE
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Variational formulation

K−1u +∇p = 0 in Ω

divu = f in Ω

p = 0 on ∂Ω.

Variational formulation

(K−1u,v)− (p,divv) = 0 ∀v ∈ H(div ,Ω)

(divu, q) = (f, q) ∀q ∈ L2(Ω)
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Discrete variational formulation

K−1u +∇p = 0 in Ω

divu = f in Ω

p = 0 on ∂Ω.

Discrete variational formulation

(K−1uh,vh)− (ph,divvh) = 0 ∀vh ∈ Vh ⊆ H(div ,Ω)

(divuh, qh) = (f, qh) ∀qh ∈ Qh ⊆ L2(Ω)

Problem : we have to solve a full (indefinite) saddle point system ...
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Mass lumping

K−1u +∇p = 0 in Ω

divu = f in Ω

p = 0 on ∂Ω.

Discrete variational formulation via mass lumping (MFMFE)

(K−1uh,vh)h − (ph,divvh) = 0 ∀vh ∈ Vh ⊆ H(div ,Ω)

(divuh, qh) = (f, qh) ∀qh ∈ Qh ⊆ L2(Ω)

For appropriate spaces Vh, Qh and (·, ·)h, the lumped mass matrix Mh is
block-diagonal, and the variable uh can be eliminated efficiently.(

Mh −C>

C 0

)(
u
p

)
=

(
0
f

)
=⇒ CM−1

h C> p = f

The problem reduces to symmetric, positive definite cell-centered system for
the pressure (CCFD)
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Discretization

Discrete variational formulation via mass lumping (MFMFE)

(K−1uh,vh)h − (ph,divvh) = 0 ∀vh ∈ Vh ⊆ H(div ,Ω)

(divuh, qh) = (f, qh) ∀qh ∈ Qh ⊆ L2(Ω)

M. Wheeler, I. Yotov A multipoint flux mixed finite element method. SIAM 2006

V (T ) = BDM1(T ) := P1(T )2 (uh,vh)h := |T |
3

3∑
i=1

uh(ri)vh(ri)

Q(T ) = P0(T ) ri vertex

Figure: DOFs of V (T ) (left) and Q(T ) (right). Blue circles are quadrature points.
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Figure: Matrix CM−1
h CT (left), stencil of the method (right)
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Convergence analysis

Summary of the convergence results

‖u− uh‖ = O(h) and ‖π0
hp− ph‖ = O(h2)

Relevant properties

(i) P0(T )2 ⊆ V(T ) and P0(T ) ⊆ Q(T ) such that divV(T ) ⊆ Q(T )

(ii) The quadrature rule is exact for P0(T )2 ×V(T )

(iii) The quadrature rule induces a norm on V(T )

Wheeler-Yotov element : V(T ) = BDM1(T ) = P1(T )2

Figure: DOFs of V (T ) (left) and Q(T ) (right). Blue circles are quadrature points.
The quadrature rule is exact for P1(T ).
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Higher order candidates

Natural extension of the first order estimates

‖u− uh‖ = O(h2) and ‖π1
hp− ph‖ = O(h3)

Relevant properties

(i) P1(T )2 ⊆ V(T ) and P1(T ) ⊆ Q(T ) such that divV(T ) ⊆ Q(T )

(ii) The quadrature rule is exact for P1(T )2 ×V(T )

(iii) The quadrature rule induces a norm on V(T )

First candidate : V(T ) = BDM2(T ) = P2(T )2

Figure: DOFs of V (T ) (left) and Q(T ) (right). Blue circles are quadrature points.
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Higher order candidates

Natural extension of the first order estimates

‖u− uh‖ = O(h2) and ‖π1
hp− ph‖ = O(h3)

Relevant properties

(i) P1(T )2 ⊆ V(T ) and P1(T ) ⊆ Q(T ) such that divV(T ) ⊆ Q(T ) X

(ii) The quadrature rule is exact for P1(T )2 ×V(T ) X

(iii) The quadrature rule induces a norm on V(T ) X

Second candidate : V(T ) = BDM+
2 (T ) = P2(T )2 ⊕ b3 · [1, 0]T ⊕ b3 · [0, 1]T

Figure: DOFs of V (T ) (left) and Q(T ) (right). Blue circles are quadrature points.
The quadrature rule is exact for P3(T )⊕ b3 · P1(T ).
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A new theory

Split the error in ‖u− uh‖L2(Ω) ≤ ‖u−Πhu‖L2(Ω) + ‖Πhu− uh‖L2(Ω)

(Πhu− uh,vh)h − (π1
hp− ph, divvh) = (Πhu− u,vh) + σh(Πhu, vh)

(div (Πhu− uh), qh) = 0

with σh(Πhu,vh) = (Πhu,vh)h − (Πhu,vh).

(I) div (Πhu− uh) = 0 ⇒ Πhu− uh ∈ P1(T )2

(II) σh(uh,vh) = 0 if uh,vh ∈ P1(T )2

Taking vh = Πhu− uh and qh = π1
hp− ph, we obtain

‖Πhu− uh‖2h = (Πhu− u,Πhu− uh) + σh(Πhu,Πhu− uh)

= (Πhu− u,Πhu− uh) + σh(Πhu− π1
hu,Πhu− uh)

≤ ‖Πhu− u‖0‖Πhu− uh‖0 + c‖Πhu− π1
hu‖0‖Πhu− uh‖0

≤ Ch2‖u‖H2(Th)‖Πhu− uh‖0
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A new theory

Theorem

‖u− uh‖ = O(h2) and ‖π0
h(p− ph)‖ = O(h3)

Relevant properties

(i) P1(T )2 ⊂ V(T ) and P1(T ) ⊂ Q(T ) such that divV(T ) ⊆ Q(T ) X

(iia) ∃ Ṽ(T ) ⊂ V(T ) s.t. v ∈ V(T ) with divv ∈ div Ṽ(T ) imply v ∈ Ṽ(T ) X

(iib) The quadrature rule is exact for P1(T )2 × Ṽ(T ) X

(iii) The quadrature rule induces a norm on V(T ) X

Third candidate : V(T ) = RT1(T ) := P1(T )2 + x · Ph
1 (T )

Figure: DOFs of V (T ) (left) and Q(T ) (right). Blue circles are quadrature points.
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Numerical tests

p = sin(πx) sin(πy) K =

(
4 + (x+ 2)2 + y2 1 + sin(xy)

1 + sin(xy) 2

)

Figure: Snapshots of the pressure ph (left) and the two velocity components ux,h, uy,h (middle,
right) for the second order approximation.

h DOF u DOF p ‖u− uh‖ eoc ‖π0
h(p− ph)‖ eoc

2−1 164 84 0.078309 — 0.033106 —
2−2 724 396 0.013097 2.57 0.002864 3.53
2−3 2498 1386 0.002275 2.52 0.000391 2.87
2−4 9738 5466 0.000484 2.23 0.000049 2.99
2−5 40230 22770 0.000099 2.28 0.000005 3.13

Table: Degrees of freedom, relative discretization errors, and convergence rates for the second
order multipoint flux finite element method.
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Comparison

The RT1 − P1 pair is about 3x faster than the BDM+
2 − P+

1 pair.
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Hybrid meshes

dim

V(T )

dim

Q(T )
‖u−uh‖0 ‖π0

hp−ph‖0
DOFs
for uh

DOFs
for ph

BDM1−P0 6+0 1 O(h) O(h2)

RT1 − P1 6+2 3 O(h2) O(h3)

BDM1−P0 8+0 1 O(h) O(h2)

BDFM2 −
P1

8+2 3 O(h2) O(h3)
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Remarks

(i) The quadrature formula has to only be exact on a certain subspace.

(i) 65% more(2D) / 45% more(3D) DoFs in comparison to the first order
method.

(ii) We can devise local post-processing strategies for the pressure

(iii) The theory can be used to design even higher order approximations, but
finding appropriate spaces and quadrature formulas gets increasingly
difficult.

Similar concept in the paper by Geevers, et al, 2018

(iv) Application to wave propagation

∂tu +∇p = f in Ω

∂tp+ divu = g in Ω

p = 0 on ∂Ω.
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Extension to poroelasicity

Poroelastic consolidation (three-field formulation)

K−1u +∇p = 0 in Ω

cs∂tp+ div (α∂tw) + divu = f in Ω

−div (2µ ε(w) + λ div (w)I) + α∇p = g in Ω

(i) The variable w encodes the scructural displacement of the medium.

(ii) We can use the finite element triple RT1 − P1 − P+
2 with mass lumping.

− D>p + Mh u = 0

B ẇ + C ṗ + D u = f

A w − B>p = g
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Extension to poroelasicity

Poroelastic consolidation (three-field formulation)

K−1u +∇p = 0 in Ω

cs∂tp+ div (α∂tw) + divu = f in Ω

−div (2µ ε(w) + λ div (w)I) + α∇p = g in Ω

(i) The variable w encodes the scructural displacement of the medium.

(ii) We can use the finite element triple RT1 − P1 − P+
2 with mass lumping.

B ẇ + C ṗ + DM−1
h D> p = f

A w − B>p = g

(iii) Algebraically, we solve the two-field formulation for p and w, which is
more efficient.
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Summary

Ô Introduced the multipoint flux mixed finite element method (MFMFE)

Ô Presented the first order approximation introduced by Wheeler and Yotov

Ô Proposed an extension to second order approximations

H. Egger and B. Radu.

On a second-order multipoint flux mixed finite element methods on hybrid meshes.

SIAM J. Numer. Anal., 58(3):1822–1844, 2020.

A few additional remarks

Ô Extension to the 3D case has also been done.

Ô The framework can be used to design even higher order approximations

Ô We can devise local post-processing strategies for the pressure

Ô The techniques can also be applied for the wave and Maxwell’s equations

Thank you for your attention
Acknowledgement : The work of Bogdan Radu is supported by the ’Excellence Initiative’ of the
German Federal and State Governments and the Graduate School of Computational Engineering at
Technische Universität Darmstadt
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Triangles

(a) BDM1 first order
element

(b) RT1 second order
element

Parallelograms

(a) BDM1 first order
element

(b) BDFM2 second
order element

Tetrahedra

(a) BDM1 first order
element

(b) RT1 second order
element

Hexahedra

(a) eBDDF1 first
order element

(b) ? - second order
element
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