A second order finite element method with mass lumping for Maxwell's equations on tetrahedra

Herbert Egger, Bogdan Radu

Johann Radon Institute for Computational and Applied Mathematics (RICAM) Austrian Academy of Sciences (ÖAW) Linz, Austria

> 11 – 14 July 2022 SCEE 2022 Amsterdam

> > ÖAW RICAM

1. Maxwell's equations

Notation Finite differences (FDTD/FIT)

2. Finite element method

First order elements First order elements with mass lumping Second order elements with mass lumping Electromagnetic wave propagation in linear and non-dispersive but possibly inhomogeneous and anisotropic media

$$\varepsilon \partial_t E(t) = \operatorname{curl} H(t) - \sigma E(t) \quad \text{in } \Omega$$

 $\mu \partial_t H(t) = -\operatorname{curl} E(t) \quad \text{in } \Omega$

in Ω , with $E(0) = E_0$ and $H(0) = H_0$ in Ω and $n \times E(t) = 0$ on $\partial \Omega$

Electromagnetic wave propagation in linear and non-dispersive but possibly inhomogeneous and anisotropic media

$$\varepsilon \partial_t E(t) = \operatorname{curl} H(t) - \sigma E(t) \quad \text{in } \Omega$$

 $\mu \partial_t H(t) = -\operatorname{curl} E(t) \quad \text{in } \Omega$

in $\Omega,$ with $E(0)=E_0$ and $H(0)=H_0$ in Ω and $n\times E(t)=0$ on $\partial\Omega$

Goal: systematic and flexible space discretization

- stable: no artificial energy production
- accurate: provable convergence rates
- efficient: appropriate for explicit time-stepping methods

Electromagnetic wave propagation in linear and non-dispersive but possibly inhomogeneous and anisotropic media

$$\varepsilon \partial_t E(t) = \operatorname{curl} H(t) - \sigma E(t) \quad \text{in } \Omega$$

 $\mu \partial_t H(t) = -\operatorname{curl} E(t) \quad \text{in } \Omega$

in $\Omega,$ with $E(0)=E_0$ and $H(0)=H_0$ in Ω and $n\times E(t)=0$ on $\partial\Omega$

Goal: systematic and flexible space discretization

- stable: no artificial energy production
- accurate: provable convergence rates
- efficient: appropriate for explicit time-stepping methods

Methods: FDTD/FIT, FEM, FVM, DG, ...

Finite differences (FDTD/FIT)

$$\begin{split} \varepsilon \, \partial_t E(t) &= \quad \mathrm{curl} \; H(t) - \sigma E(t) & \quad \mathrm{in} \; \Omega \\ \mu \, \partial_t H(t) &= - \mathrm{curl} \; E(t) & \quad \mathrm{in} \; \Omega \end{split}$$

- 1966 Yee Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media
- 1977 Weiland Eine Methode zur Lösung der Maxwell'schen Gleichungen für sechskomponentige Felder auf diskreter Basis
- 1980 Taflove Application of the Finite-Difference Time-Domain method to sinusoidal steady-state electromagnetic penetration problems

Finite differences (FDTD/FIT)

$$\begin{split} \varepsilon \, \partial_t E(t) &= \quad \mathrm{curl} \; H(t) - \sigma E(t) & \quad \mathrm{in} \; \Omega \\ \mu \, \partial_t H(t) &= - \mathrm{curl} \; E(t) & \quad \mathrm{in} \; \Omega \end{split}$$

- 1966 Yee Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media
- 1977 Weiland Eine Methode zur Lösung der Maxwell'schen Gleichungen für sechskomponentige Felder auf diskreter Basis
- 1980 Taflove Application of the Finite-Difference Time-Domain method to sinusoidal steady-state electromagnetic penetration problems

Pros

- Easy to implement
- stable, accurate $O(h^2 + \tau^2)$, efficient

Cons

 Difficulties in dealing with complex domains

Finite element method

$$\begin{split} \varepsilon \, \partial_t E(t) &= \quad \mathrm{curl} \; H(t) - \sigma E(t) & \quad \mathrm{in} \; \Omega \\ \mu \, \partial_t H(t) &= - \mathrm{curl} \; E(t) & \quad \mathrm{in} \; \Omega \end{split}$$

Finite element method

$$\begin{split} \varepsilon \, \partial_t E(t) &= \quad \operatorname{curl} H(t) - \underbrace{\sigma E(t)}_{\mu \, \partial_t H(t)} &= - \operatorname{curl} E(t) & \quad \operatorname{in} \, \Omega \end{split}$$

$$\begin{split} \varepsilon \, \partial_t E(t) &= \quad \mathrm{curl} \; H(t) - \underbrace{\sigma E(t)}_{\mu \; \partial_t H(t)} &= -\mathrm{curl} \; E(t) & \quad \mathrm{in} \; \Omega \end{split}$$

Approximation spaces: $V_h \subset H_0(\operatorname{curl}, \Omega)$ and $Q_h \subset L^2(\Omega)$

Galerkin method: For t > 0, find $E_h(t) \in V_h$ and $H_h(t) \in Q_h$ such that

$$(\varepsilon \partial_t E_h(t), v_h)_{\Omega} - (H_h(t), \operatorname{curl} v_h)_{\Omega} = 0$$

$$(\mu \partial_t H_h(t), q_h)_{\Omega} + (\operatorname{curl} E_h(t), q_h)_{\Omega} = 0$$

for all test functions $v_h \in V_h$ and $q_h \in Q_h$, and for all t > 0.

$$\begin{split} \varepsilon \, \partial_t E(t) &= \quad \mathrm{curl} \; H(t) - \underbrace{\sigma E(t)}_{\mu \; \partial_t H(t)} &= -\mathrm{curl} \; E(t) & \quad \mathrm{in} \; \Omega \end{split}$$

Approximation spaces: $V_h \subset H_0(\operatorname{curl}, \Omega)$ and $Q_h \subset L^2(\Omega)$

Galerkin method: For t > 0, find $E_h(t) \in V_h$ and $H_h(t) \in Q_h$ such that

$$(\varepsilon \partial_t E_h(t), v_h)_{\Omega} - (H_h(t), \operatorname{curl} v_h)_{\Omega} = 0$$

$$(\mu \partial_t H_h(t), q_h)_{\Omega} + (\operatorname{curl} E_h(t), q_h)_{\Omega} = 0$$

for all test functions $v_h \in V_h$ and $q_h \in Q_h$, and for all t > 0.

Algebraic realization. For a choice of basis functions, we have

$$\mathbf{M}_{\varepsilon}\partial_{t}\mathbf{e}(t) - \mathbf{C}^{\top}\mathbf{h}(t) = 0$$
$$\mathbf{D}_{\mu}\partial_{t}\mathbf{h}(t) + \mathbf{C}\mathbf{e}(t) = 0$$

ο

Finite element spaces on reference elements.

▶ 1980 - Nedelec - Mixed Finite Elements in \mathbb{R}^3

$$\begin{array}{c} & & V_h(Q) = \mathcal{N}_0(Q) \\ & & \phi_1 = (1 - y, 0) \\ & & Q_h(Q) = P_0(Q) \end{array} \qquad \begin{array}{c} \phi_1 = (1 - y, 0) \\ & \phi_2 = (y, 0) \end{array} \qquad \begin{array}{c} \phi_3 = (0, 1 - x) \\ & \phi_4 = (0, x) \end{array} \\ & & V_h(T) = \mathcal{N}_0(T) \\ & & \phi_1 = (1 - y, x) \\ & & Q_h(T) = P_0(T) \end{array} \qquad \begin{array}{c} \phi_1 = (1 - y, x) \\ & \phi_2 = (-y, x) \end{array} \qquad \begin{array}{c} \phi_3 = (y, 1 - x) \\ & \phi_2 = (-y, x) \end{array}$$

Finite element spaces on reference elements.

▶ 1980 - Nedelec - Mixed Finite Elements in \mathbb{R}^3

$$\begin{array}{c|c} & & & V_h(Q) = \mathcal{N}_0(Q) & & \phi_1 = (1 - y, 0) & \phi_3 = (0, 1 - x) \\ & & & Q_h(Q) = P_0(Q) & & \phi_2 = (y, 0) & & \phi_4 = (0, x) \\ \hline & & & & \\ & &$$

Lemma (accuracy) If E and H are sufficiently smooth, then

$$||E(t) - E_h(t)||_{L^2} + ||H(t) - H_h(t)||_{L^2} \le Ch$$

- 1992 Monk Analysis of a finite element method for Maxwell's equations
- 1993 Monk An analysis of Nedelec's method for spatial discretization of Maxwell's equations

Stability and accuracy.

Lowest order MFEM yields stable and accurate approximation in space.

Stability and accuracy.

Lowest order MFEM yields stable and accurate approximation in space.

Numerical solution. Time integration of resulting ode system

$$\mathbf{M}_{\varepsilon}\partial_{t}\mathbf{e}(t) - \mathbf{C}^{\top}\mathbf{h}(t) = 0$$

$$\mathbf{D}_{\mu}\partial_{t}\mathbf{h}(t) + \mathbf{C}\mathbf{e}(t) = 0$$

by explicit schemes requires application of $\mathbf{M}_{\varepsilon}^{-1}$ and \mathbf{D}_{μ}^{-1} .

Stability and accuracy.

Lowest order MFEM yields stable and accurate approximation in space.

Numerical solution. Time integration of resulting ode system

$$\mathbf{M}_{\varepsilon}\partial_{t}\mathbf{e}(t) - \mathbf{C}^{\top}\mathbf{h}(t) = 0$$

$$\mathbf{D}_{\mu}\partial_{t}\mathbf{h}(t) + \mathbf{C}\mathbf{e}(t) = 0$$

by explicit schemes requires application of $\mathbf{M}_{\varepsilon}^{-1}$ and \mathbf{D}_{μ}^{-1} .

Note. Here D_{μ} is diagonal, but M_{ε} does not have a sparse inverse! Thus, explicit time-stepping for standard MFEM is not efficient.

Stability and accuracy.

Lowest order MFEM yields stable and accurate approximation in space.

Numerical solution. Time integration of resulting ode system

$$\mathbf{M}_{\varepsilon}\partial_{t}\mathbf{e}(t) - \mathbf{C}^{\top}\mathbf{h}(t) = 0$$

$$\mathbf{D}_{\mu}\partial_{t}\mathbf{h}(t) + \mathbf{C}\mathbf{e}(t) = 0$$

by explicit schemes requires application of $\mathbf{M}_{\varepsilon}^{-1}$ and \mathbf{D}_{μ}^{-1} .

Note. Here D_{μ} is diagonal, but M_{ε} does not have a sparse inverse! Thus, explicit time-stepping for standard MFEM is not efficient.

Remedy – Mass-lumping: replace \mathbf{M}_{ε} by approximation $\mathbf{M}_{\varepsilon}^{L}$ such that

- $\mathbf{M}_{\varepsilon}^{L}$ corresponds to positive definite matrix (stability)
- ▶ $\mathbf{M}_{\varepsilon}^{L}$ is good approximation for \mathbf{M}_{ε} (accuracy)
- $(\mathbf{M}_{\varepsilon}^{L})^{-1}$ can be applied efficiently (efficiency) construction of $\mathbf{M}_{\varepsilon}^{L}$ usually via numerical quadrature.

Mass lumping literature

1975 - Fried, Malkus - Finite element mass matrix lumping by numerical integration with no convergence rate loss

- 1999 Kong, Mulder, Veldhuizen Higher-order triangular and tetrahedral finite elements with mass lumping for solving the wave equation
- 2000 Becache, Joly, Tsogka An analysis of new mixed finite elements for the approximation of wave propagation models
- 2001 Mulder Higher-order mass-lumped finite elements for the wave equation
- 2002 Cohen Higher-Order Numerical Methods for Transient Wave Equations

2018 - Geevers, Mulder, Vegt - New higher-order mass-lumped tetrahedral elements for wave propagation modelling

Mass-lumping in H^1

Mass lumping literature

- 1975 Fried, Malkus Finite element mass matrix lumping by numerical integration with no convergence rate loss
- 1990 Lee, Madsen A mixed FEM formulation for Maxwell's equations in the time domain
- 1995 Cohen, Monk Mass lumped edge elements in three dimensions
- 1997 Elmkies, Joly Elements finis d'arete et condensation de masse pour les equations de Maxwell le cas 3D
- 1998 Cohen, Monk Gauss Point Mass Lumping Schemes for Maxwell's Equations
- 1999 Kong, Mulder, Veldhuizen Higher-order triangular and tetrahedral finite elements with mass lumping for solving the wave equation
- 2000 Becache, Joly, Tsogka An analysis of new mixed finite elements for the approximation of wave propagation models
- 2001 Mulder Higher-order mass-lumped finite elements for the wave equation
- 2002 Cohen Higher-Order Numerical Methods for Transient Wave Equations
- 2004 Lacoste Mass-lumping for the first order Raviart-Thomas-Nedelec finite elements
- 2007 Jund, Salmon Arbitrary high-order finite element schemes and high order mass lumping
- 2018 Geevers, Mulder, Vegt New higher-order mass-lumped tetrahedral elements for wave propagation modelling

Mass-lumping in H^1

Mass-lumping in H(div) and H(curl)

Observation: No combination of quadrature rule and basis functions that leads to decoupling of entries in mass matrix for V_h .

Observation: No combination of quadrature rule and basis functions that leads to decoupling of entries in mass matrix for V_h .

General rule of thumb: Exactly two basis functions are necessary for each quadrature point in order to achieve local orthogonalization.

Observation: No combination of quadrature rule and basis functions that leads to decoupling of entries in mass matrix for V_h .

General rule of thumb: Exactly two basis functions are necessary for each quadrature point in order to achieve local orthogonalization.

Some existing methods: Acute mesh lumping (triangles)

1996 - Baranger - Connection between finite volume and mixed finite element methods

Use a larger polynomial space

Use a larger polynomial space

Use a larger polynomial space

Use a larger polynomial space

Use a larger polynomial space

Use a larger polynomial space

Lemma. $\widetilde{\mathbf{M}}_{\epsilon}^{L}$ is block diagonal and thus also $(\widetilde{\mathbf{M}}_{\epsilon}^{L})^{-1}$.

Theorem (accuracy) If E and H are sufficiently smooth, then

$$\|\boldsymbol{E}(t) - \widetilde{\boldsymbol{E}}_{h}(t)\| + \|\boldsymbol{H}(t) - \widetilde{\boldsymbol{H}}_{h}(t)\| \le Ch$$

2020 - Egger, Radu - A mass-lumped mixed finite element method for Maxwell's equations

Use a larger polynomial space

Lemma. $\widetilde{\mathbf{M}}_{\epsilon}^{L}$ is block diagonal and thus also $(\widetilde{\mathbf{M}}_{\epsilon}^{L})^{-1}$.

Theorem (accuracy) If E and H are sufficiently smooth, then

$$\|\boldsymbol{E}(t) - \widetilde{\boldsymbol{E}}_{h}(t)\| + \|\boldsymbol{H}(t) - \widetilde{\boldsymbol{H}}_{h}(t)\| \le Ch$$

2020 - Egger, Radu - A mass-lumped mixed finite element method for Maxwell's equations

Proof Idea: Error splitting in discrete and projection error, discrete stability, energy estimates, consistency error, analysis of the quadrature error (Strang).

Use a larger polynomial space

Lemma. $\widetilde{\mathbf{M}}_{\epsilon}^{L}$ is block diagonal and thus also $(\widetilde{\mathbf{M}}_{\epsilon}^{L})^{-1}$.

Theorem (accuracy) If E and H are sufficiently smooth, then

$$\|\boldsymbol{E}(t) - \widetilde{\boldsymbol{E}}_{h}(t)\| + \|\boldsymbol{H}(t) - \widetilde{\boldsymbol{H}}_{h}(t)\| \le Ch$$

2020 - Egger, Radu - A mass-lumped mixed finite element method for Maxwell's equations

Proof Idea: Error splitting in discrete and projection error, discrete stability, energy estimates, consistency error, analysis of the quadrature error (Strang).

Requirement : The quadrature rule must be exact for $P_0(T)^2 \times \widetilde{V}_h(T)$

First order elements on tetrahedral meshes

The same concept also applies in 3D on tetrahedral meshes

First order elements on tetrahedral meshes

The same concept also applies in 3D on tetrahedral meshes

Theorem (accuracy)

If E and H are sufficiently smooth, then

$$\|\boldsymbol{E}(t) - \widetilde{\boldsymbol{E}}_{h}(t)\| + \|\boldsymbol{H}(t) - \widetilde{\boldsymbol{H}}_{h}(t)\| \le Ch$$

First order elements on tetrahedral meshes

The same concept also applies in 3D on tetrahedral meshes

Theorem (accuracy)

If E and H are sufficiently smooth, then

$$\|\boldsymbol{E}(t) - \widetilde{\boldsymbol{E}}_{h}(t)\| + \|\boldsymbol{H}(t) - \widetilde{\boldsymbol{H}}_{h}(t)\| \le Ch$$

Next task : Extension to second order elements.

Second order elements

Extension to second order elements

1997 - Elmkies, Joly - Elements finis d'arete et condensation de masse pour les equations de Maxwell - le cas 2D

$$\widehat{V}_h(T) = \mathcal{N}_1(T) \oplus B = \mathcal{E}\mathcal{J}_1(T) \subseteq P_3(T)$$
$$\widehat{Q}_h(T) = P_2(T)$$

Second order elements

Extension to second order elements

1997 - Elmkies, Joly - Elements finis d'arete et condensation de masse pour les equations de Maxwell - le cas 2D

$$\widehat{V}_h(T) = \mathcal{N}_1(T) \oplus B = \mathcal{E}\mathcal{J}_1(T) \subseteq P_3(T)$$
$$\widehat{Q}_h(T) = P_2(T)$$

New proposal :

The quadrature rule is exact for P_2 polynomials ... but is this enough ?

New proposal :

Theorem (accuracy). If E and H are sufficiently smooth, then

$$\|\boldsymbol{E}(t) - \widehat{\boldsymbol{E}}_h(t)\| + \|\boldsymbol{H}(t) - \widehat{\boldsymbol{H}}_h(t)\| \le Ch^2$$

New proposal :

Theorem (accuracy). If E and H are sufficiently smooth, then

$$\|\boldsymbol{E}(t) - \widehat{\boldsymbol{E}}_h(t)\| + \|\boldsymbol{H}(t) - \widehat{\boldsymbol{H}}_h(t)\| \le Ch^2$$

Proof Idea: Discrete stability, energy estimates, Galerkin orthogonality, consistency error, Strang analysis of the quadrature error.

Classic requirement : The quadrature rule has to be exact for $P_1(T)^d imes \widehat{V}_h(T)$

New proposal :

Theorem (accuracy). If E and H are sufficiently smooth, then

$$\|\boldsymbol{E}(t) - \widehat{\boldsymbol{E}}_h(t)\| + \|\boldsymbol{H}(t) - \widehat{\boldsymbol{H}}_h(t)\| \le Ch^2$$

Proof Idea: Discrete stability, energy estimates, Galerkin orthogonality, consistency error, Strang analysis of the quadrature error.

Classic requirement : The quadrature rule has to be exact for $P_1(T)^d imes \widehat{V}_h(T)$

New requirements

- (i) There exists a splitting $\widehat{V}_h(T) = W(T) \oplus B(T)$ such that $\dim(B(T)) = \dim(\operatorname{curl}(B(T)))$ and $\operatorname{curl}(B(T)) \cap \operatorname{curl}(W(T)) = \{0\}$
- (ii) The quadrature rule is exact for $P_1(T)^2 \times W(T)$

New proposal :

$$\widehat{V}_h(T) = \mathcal{N}_1(T) = \mathcal{NC}_1(T) \oplus B(T)$$

$$\widehat{Q}_h(T) = P_1(T)$$

Theorem (accuracy). If E and H are sufficiently smooth, then

$$\|\boldsymbol{E}(t) - \widehat{\boldsymbol{E}}_h(t)\| + \|\boldsymbol{H}(t) - \widehat{\boldsymbol{H}}_h(t)\| \le Ch^2$$

Proof Idea: Discrete stability, energy estimates, Galerkin orthogonality, consistency error, Strang analysis of the quadrature error.

Classic requirement : The quadrature rule has to be exact for $P_1(T)^d imes \widehat{V}_h(T)$

New requirements

- (i) There exists a splitting $\widehat{V}_h(T) = \mathcal{NC}_1(T) \oplus B(T)$ such that $\dim(B(T)) = \dim(\operatorname{curl}(B(T)))$ and $\operatorname{curl}(B(T)) \cap \operatorname{curl}(\mathcal{NC}_1(T)) = \{0\}$
- (ii) The quadrature rule is exact for $P_1(T)^2 \times \mathcal{NC}_1(T) = P_2(T)^2$

1997 - Elmkies, Joly - Elements finis d'arete et condensation de masse pour les equations de Maxwell - le cas 3D

$$\widehat{V}_h(T) = \mathcal{N}_1(T)$$

1997 - Elmkies, Joly - Elements finis d'arete et condensation de masse pour les equations de Maxwell - le cas 3D

$$\widehat{V}_h(T) = \mathcal{N}_1(T) \oplus B(T) \qquad B(T) = \operatorname{span} \begin{cases} \Phi_1 = \lambda_2 \lambda_3 \lambda_4 \nabla \lambda_1 \\ \Phi_2 = \lambda_1 \lambda_3 \lambda_4 \nabla \lambda_2 \\ \Phi_3 = \lambda_1 \lambda_2 \lambda_4 \nabla \lambda_3 \\ \Phi_4 = \lambda_1 \lambda_2 \lambda_3 \nabla \lambda_4 \end{cases}$$

1997 - Elmkies, Joly - Elements finis d'arete et condensation de masse pour les equations de Maxwell - le cas 3D

$$\hat{V}_{h}(T) = \mathcal{N}_{1}(T) \oplus B(T) \qquad B(T) = \operatorname{span} \begin{cases} \Phi_{1} = \lambda_{2}\lambda_{3}\lambda_{4}\nabla\lambda_{1} \\ \Phi_{2} = \lambda_{1}\lambda_{3}\lambda_{4}\nabla\lambda_{2} \\ \Phi_{3} = \lambda_{1}\lambda_{2}\lambda_{4}\nabla\lambda_{3} \\ \Phi_{4} = \lambda_{1}\lambda_{2}\lambda_{3}\nabla\lambda_{4} \end{cases}$$

But $\nabla(\lambda_1\lambda_2\lambda_3\lambda_4) = \Phi_1 + \Phi_2 + \Phi_3 + \Phi_4 \Rightarrow \operatorname{curl}(\Phi_1 + \Phi_2 + \Phi_3 + \Phi_4) = 0.$ Thus $\dim(B(T)) \neq \dim(\operatorname{curl} B(T))$!

1997 - Elmkies, Joly - Elements finis d'arete et condensation de masse pour les equations de Maxwell - le cas 3D

$$\widehat{V}_{h}(T) = \mathcal{N}_{1}(T) \oplus B(T) \qquad B(T) = \operatorname{span} \begin{cases} \Phi_{1} = \lambda_{2}\lambda_{3}\lambda_{4}\nabla\lambda_{1} \\ \Phi_{2} = \lambda_{1}\lambda_{3}\lambda_{4}\nabla\lambda_{2} \\ \Phi_{3} = \lambda_{1}\lambda_{2}\lambda_{4}\nabla\lambda_{3} \\ \Phi_{4} = \lambda_{1}\lambda_{2}\lambda_{3}\nabla\lambda_{4} \end{cases}$$

But $\nabla(\lambda_1\lambda_2\lambda_3\lambda_4) = \Phi_1 + \Phi_2 + \Phi_3 + \Phi_4 \Rightarrow \operatorname{curl}(\Phi_1 + \Phi_2 + \Phi_3 + \Phi_4) = 0.$ Thus $\dim(B(T)) \neq \dim(\operatorname{curl} B(T))$!

Theorem [EggerRadu21]. If (and only if) div(E) = 0, then

$$\|\boldsymbol{E}(t) - \widehat{\boldsymbol{E}}_h(t)\| + \|\boldsymbol{H}(t) - \widehat{\boldsymbol{H}}_h(t)\| \le Ch^2$$

Note. In general, second order convergence is lost!

1997 - Elmkies, Joly - Elements finis d'arete et condensation de masse pour les equations de Maxwell - le cas 3D

$$\widehat{V}_{h}(T) = \mathcal{N}_{1}(T) \oplus B(T) \qquad B(T) = \operatorname{span} \begin{cases} \Phi_{1} = \lambda_{2}\lambda_{3}\lambda_{4}\nabla\lambda_{1} \\ \Phi_{2} = \lambda_{1}\lambda_{3}\lambda_{4}\nabla\lambda_{2} \\ \Phi_{3} = \lambda_{1}\lambda_{2}\lambda_{4}\nabla\lambda_{3} \\ \Phi_{4} = \lambda_{1}\lambda_{2}\lambda_{3}\nabla\lambda_{4} \end{cases}$$

But $\nabla(\lambda_1\lambda_2\lambda_3\lambda_4) = \Phi_1 + \Phi_2 + \Phi_3 + \Phi_4 \Rightarrow \operatorname{curl}(\Phi_1 + \Phi_2 + \Phi_3 + \Phi_4) = 0.$ Thus $\dim(B(T)) \neq \dim(\operatorname{curl} B(T))$!

Theorem [EggerRadu21]. If (and only if) div(E) = 0, then

$$\|\boldsymbol{E}(t) - \widehat{\boldsymbol{E}}_h(t)\| + \|\boldsymbol{H}(t) - \widehat{\boldsymbol{H}}_h(t)\| \le Ch^2$$

Note. In general, second order convergence is lost! **Solution.** Modify one basis function, for example $\widehat{\Phi}_4 = \lambda_1 \lambda_2 \lambda_3 (\lambda_2 - \lambda_1 + 1) \nabla \lambda_4$

1997 - Elmkies, Joly - Elements finis d'arete et condensation de masse pour les equations de Maxwell - le cas 3D

$$\widehat{V}_{h}(T) = \mathcal{N}_{1}(T) \oplus B(T) \qquad B(T) = \operatorname{span} \begin{cases} \Phi_{1} = \lambda_{2}\lambda_{3}\lambda_{4}\nabla\lambda_{1} \\ \Phi_{2} = \lambda_{1}\lambda_{3}\lambda_{4}\nabla\lambda_{2} \\ \Phi_{3} = \lambda_{1}\lambda_{2}\lambda_{4}\nabla\lambda_{3} \\ \widehat{\Phi}_{4} \end{cases}$$

But $\nabla(\lambda_1\lambda_2\lambda_3\lambda_4) = \Phi_1 + \Phi_2 + \Phi_3 + \Phi_4 \Rightarrow \operatorname{curl}(\Phi_1 + \Phi_2 + \Phi_3 + \Phi_4) = 0.$

Thus $\dim(B(T)) \neq \dim(\operatorname{curl} B(T))$!

Theorem [EggerRadu21]. If (and only if) div(E) = 0, then

$$\|\boldsymbol{E}(t) - \widehat{\boldsymbol{E}}_h(t)\| + \|\boldsymbol{H}(t) - \widehat{\boldsymbol{H}}_h(t)\| \le Ch^2$$

Note. In general, second order convergence is lost! **Solution.** Modify one basis function, for example $\widehat{\Phi}_4 = \lambda_1 \lambda_2 \lambda_3 (\lambda_2 - \lambda_1 + 1) \nabla \lambda_4$

Main takeaways

Key ingredients for mass lumping:

- Start with a basis space V_h that contains all $P_k(T)^d$ polynomials (for approximation).
- \blacktriangleright V_h dictates the number of continuity conditions on the boundary
- Find a quadrature rule that has sufficiently many quadrature points on the boundary and has the desired accuracy
- Extend V_h by appropriate "bubble" functions such that we have exactly d-many functions for each quadrature point.

- 2020 Egger, Radu A mass-lumped mixed finite element method for acoustic wave propagation.
- 2020 Egger, Radu A mass-lumped mixed finite element method for Maxwell's equations
- 2021 Egger, Radu A second order finite element method with mass lumping for wave equations in H(div).
- 2021 Egger, Radu A Second-Order Finite Element Method with Mass Lumping for Maxwell's Equations on Tetrahedra.

Thank you for your attention!

Extension to even higher orders

We look for Gauss-Lobatto type quadrature rules !

Extension to even higher orders

We look for Gauss-Lobatto type quadrature rules !

