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Linz, Austria

11 – 14 July 2022
SCEE 2022 Amsterdam

1 / 16



Table of Contents

1. Maxwell’s equations
Notation
Finite differences (FDTD/FIT)

2. Finite element method
First order elements
First order elements with mass lumping
Second order elements with mass lumping

2 / 16



Maxwell’s equations

Electromagnetic wave propagation in linear and non-dispersive but possibly
inhomogeneous and anisotropic media

ε ∂tE(t) = curl H(t)− σE(t) in Ω

µ∂tH(t) = −curl E(t) in Ω

in Ω, with E(0) = E0 and H(0) = H0 in Ω and n× E(t) = 0 on ∂Ω

Goal: systematic and flexible space discretization

I stable: no artificial energy production

I accurate: provable convergence rates

I efficient: appropriate for explicit time-stepping methods

Methods: FDTD/FIT, FEM, FVM, DG, . . .
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Finite differences (FDTD/FIT)

ε ∂tE(t) = curl H(t)− σE(t) in Ω

µ∂tH(t) = −curl E(t) in Ω

I 1966 - Yee - Numerical solution of initial boundary value problems involving Maxwell’s

equations in isotropic media

I 1977 - Weiland - Eine Methode zur Lösung der Maxwell’schen Gleichungen für

sechskomponentige Felder auf diskreter Basis

I 1980 - Taflove - Application of the Finite-Difference Time-Domain method to sinusoidal

steady-state electromagnetic penetration problems

Pros
I Easy to implement
I stable, accurate O(h2 + τ2),

efficient

Cons

I Difficulties in dealing with complex
domains
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Finite element method

ε ∂tE(t) = curl H(t)− σE(t) in Ω

µ∂tH(t) = −curl E(t) in Ω

Approximation spaces: Vh ⊂ H0(curl,Ω) and Qh ⊂ L2(Ω)

Galerkin method: For t > 0, find Eh(t) ∈ Vh and Hh(t) ∈ Qh such that

(ε∂tEh(t), vh)Ω − (Hh(t), curl vh)Ω = 0

(µ∂tHh(t), qh)Ω + (curl Eh(t), qh)Ω = 0

for all test functions vh ∈ Vh and qh ∈ Qh, and for all t > 0.

Algebraic realization. For a choice of basis functions, we have

Mε∂te(t)−C>h(t) = 0

Dµ∂th(t) + C e(t) = 0

5 / 16



Finite element method

ε ∂tE(t) = curl H(t)−���XXXσE(t) in Ω

µ∂tH(t) = −curl E(t) in Ω

Approximation spaces: Vh ⊂ H0(curl,Ω) and Qh ⊂ L2(Ω)

Galerkin method: For t > 0, find Eh(t) ∈ Vh and Hh(t) ∈ Qh such that

(ε∂tEh(t), vh)Ω − (Hh(t), curl vh)Ω = 0

(µ∂tHh(t), qh)Ω + (curl Eh(t), qh)Ω = 0

for all test functions vh ∈ Vh and qh ∈ Qh, and for all t > 0.

Algebraic realization. For a choice of basis functions, we have

Mε∂te(t)−C>h(t) = 0

Dµ∂th(t) + C e(t) = 0

5 / 16



Finite element method

ε ∂tE(t) = curl H(t)−���XXXσE(t) in Ω

µ∂tH(t) = −curl E(t) in Ω

Approximation spaces: Vh ⊂ H0(curl,Ω) and Qh ⊂ L2(Ω)

Galerkin method: For t > 0, find Eh(t) ∈ Vh and Hh(t) ∈ Qh such that

(ε∂tEh(t), vh)Ω − (Hh(t), curl vh)Ω = 0

(µ∂tHh(t), qh)Ω + (curl Eh(t), qh)Ω = 0

for all test functions vh ∈ Vh and qh ∈ Qh, and for all t > 0.

Algebraic realization. For a choice of basis functions, we have

Mε∂te(t)−C>h(t) = 0

Dµ∂th(t) + C e(t) = 0

5 / 16



Finite element method

ε ∂tE(t) = curl H(t)−���XXXσE(t) in Ω

µ∂tH(t) = −curl E(t) in Ω

Approximation spaces: Vh ⊂ H0(curl,Ω) and Qh ⊂ L2(Ω)

Galerkin method: For t > 0, find Eh(t) ∈ Vh and Hh(t) ∈ Qh such that

(ε∂tEh(t), vh)Ω − (Hh(t), curl vh)Ω = 0

(µ∂tHh(t), qh)Ω + (curl Eh(t), qh)Ω = 0

for all test functions vh ∈ Vh and qh ∈ Qh, and for all t > 0.

Algebraic realization. For a choice of basis functions, we have

Mε∂te(t)−C>h(t) = 0

Dµ∂th(t) + C e(t) = 0

5 / 16



First order elements

Finite element spaces on reference elements.

I 1980 - Nedelec - Mixed Finite Elements in R3

Vh(Q) = N0(Q)
Qh(Q) = P0(Q)

φ1 = (1− y, 0) φ3 = (0, 1− x)
φ2 = (y, 0) φ4 = (0, x)

Vh(T ) = N0(T )
Qh(T ) = P0(T )

φ1 = (1− y, x) φ3 = (y, 1− x)
φ2 = (−y, x)

Lemma (accuracy) If E and H are sufficiently smooth, then

‖E(t)− Eh(t)‖L2 + ‖H(t)−Hh(t)‖L2 ≤ Ch

I 1992 - Monk - Analysis of a finite element method for Maxwell’s equations

I 1993 - Monk - An analysis of Nedelec’s method for spatial discretization of Maxwell’s

equations
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First order elements

Stability and accuracy.
Lowest order MFEM yields stable and accurate approximation in space.

Numerical solution. Time integration of resulting ode system

Mε∂te(t)−C>h(t) = 0

Dµ∂th(t) + C e(t) = 0

by explicit schemes requires application of M−1
ε and D−1

µ .

Note. Here Dµ is diagonal, but Mε does not have a sparse inverse!
Thus, explicit time-stepping for standard MFEM is not efficient.

Remedy – Mass-lumping: replace Mε by approximation ML
ε such that

I ML
ε corresponds to positive definite matrix (stability)

I ML
ε is good approximation for Mε (accuracy)

I (ML
ε )−1 can be applied efficiently (efficiency)

construction of ML
ε usually via numerical quadrature.
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Mass lumping literature

I 1975 - Fried, Malkus - Finite element mass matrix lumping by numerical integration with no
convergence rate loss

I 1990 - Lee, Madsen - A mixed FEM formulation for Maxwell’s equations in the time domain

I 1995 - Cohen, Monk - Mass lumped edge elements in three dimensions

I 1997 - Elmkies, Joly - Elements finis d’arete et condensation de masse pour les equations de Maxwell -
le cas 3D

I 1998 - Cohen, Monk - Gauss Point Mass Lumping Schemes for Maxwell’s Equations

I 1999 - Kong, Mulder, Veldhuizen - Higher-order triangular and tetrahedral finite elements with mass
lumping for solving the wave equation

I 2000 - Becache, Joly, Tsogka - An analysis of new mixed finite elements for the approximation of wave
propagation models

I 2001 - Mulder - Higher-order mass-lumped finite elements for the wave equation

I 2002 - Cohen - Higher-Order Numerical Methods for Transient Wave Equations

I 2004 - Lacoste - Mass-lumping for the first order Raviart–Thomas–Nedelec finite elements

I 2007 - Jund, Salmon - Arbitrary high-order finite element schemes and high order mass lumping

I 2018 - Geevers, Mulder, Vegt - New higher-order mass-lumped tetrahedral elements for wave
propagation modelling

Mass-lumping in H1
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Observation for the lowest order case

Vh(Q) = N0(Q)
Qh(Q) = P0(Q)

φ1 = (1− y, 0) φ3 = (0, 1− x)
φ2 = (y, 0) φ4 = (0, x)

Vh(T ) = N0(T )
Qh(T ) = P0(T )

φ1 = (1− y, x) φ3 = (y, 1− x)
φ2 = (−y, x)

Observation: No combination of quadrature rule and basis functions that leads
to decoupling of entries in mass matrix for Vh.

General rule of thumb: Exactly two basis functions are necessary for each
quadrature point in order to achieve local orthogonalization.

Some existing methods: Acute mesh lumping (triangles)

I 1996 - Baranger - Connection between finite volume and mixed finite
element methods
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First order elements... with mass lumping!

Use a larger polynomial space

Ṽh(Q) = NC1(Q)

Q̃h(Q) = P0(Q)

Ṽh(T ) = NC1(T )

Q̃h(T ) = P0(T )

Lemma. M̃L
ε is block diagonal and thus also (M̃L

ε )−1.
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I 2020 - Egger, Radu - A mass-lumped mixed finite element method for
Maxwell’s equations
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energy estimates, consistency error, analysis of the quadrature error (Strang).
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First order elements on tetrahedral meshes

The same concept also applies in 3D on tetrahedral meshes

Ṽh(T ) = NC1(T )

Q̃h(T ) = P0(T )

Theorem (accuracy)
If E and H are sufficiently smooth, then

‖E(t)− Ẽh(t)‖+ ‖H(t)− H̃h(t)‖ ≤ Ch

Next task : Extension to second order elements.
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Second order elements

Extension to second order elements

I 1997 - Elmkies, Joly - Elements finis d’arete et condensation de masse pour
les equations de Maxwell - le cas 2D

+8
V̂h(T ) = N1(T )⊕B = EJ 1(T ) ⊆ P3(T )

Q̂h(T ) = P2(T )

New proposal :

+2
V̂h(T ) = N1(T ) ⊆ P2(T )

Q̂h(T ) = P1(T )

The quadrature rule is exact for P2 polynomials ... but is this enough ?
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Short notes on the analysis

New proposal :

+2
V̂h(T ) = N1(T )

Q̂h(T ) = P1(T )

Theorem (accuracy). If E and H are sufficiently smooth, then

‖E(t)− Êh(t)‖+ ‖H(t)− Ĥh(t)‖ ≤ Ch2

Proof Idea: Discrete stability, energy estimates, Galerkin orthogonality,
consistency error, Strang analysis of the quadrature error.

Classic requirement : The quadrature rule has to be exact for P1(T )d × V̂h(T )

New requirements

(i) There exists a splitting V̂h(T ) = W (T )⊕B(T ) such that
dim(B(T )) = dim(curl(B(T ))) and curl(B(T )) ∩ curl(W (T )) = {0}

(ii) The quadrature rule is exact for P1(T )2 ×W (T )
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New requirements

(i) There exists a splitting V̂h(T ) = NC1(T )⊕B(T ) such that
dim(B(T )) = dim(curl(B(T ))) and curl(B(T )) ∩ curl(NC1(T )) = {0}

(ii) The quadrature rule is exact for P1(T )2 ×NC1(T ) = P2(T )2
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Second order method - 3D

I 1997 - Elmkies, Joly - Elements finis d’arete et condensation de masse pour
les equations de Maxwell - le cas 3D

V̂h(T ) = N1(T )

⊕B(T ) B(T ) = span


Φ1 = λ2λ3λ4∇λ1

Φ2 = λ1λ3λ4∇λ2

Φ3 = λ1λ2λ4∇λ3

Φ4 = λ1λ2λ3∇λ4


But ∇(λ1λ2λ3λ4) = Φ1 + Φ2 + Φ3 + Φ4 ⇒ curl(Φ1 + Φ2 + Φ3 + Φ4) = 0.

Thus dim(B(T )) 6= dim(curlB(T )) !

Theorem [EggerRadu21]. If (and only if) div(E) = 0, then

‖E(t)− Êh(t)‖+ ‖H(t)− Ĥh(t)‖ ≤ Ch2

Note. In general, second order convergence is lost!

Solution. Modify one basis function, for example Φ̂4 = λ1λ2λ3(λ2 − λ1 + 1)∇λ4
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Main takeaways

Key ingredients for mass lumping:

I Start with a basis space Vh that contains all Pk(T )d polynomials (for
approximation).

I Vh dictates the number of continuity conditions on the boundary

I Find a quadrature rule that has sufficiently many quadrature points on the
boundary and has the desired accuracy

I Extend Vh by appropriate ”bubble” functions such that we have exactly
d-many functions for each quadrature point.
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List of relevant publications

I 2020 - Egger, Radu - A mass-lumped mixed finite element method for
acoustic wave propagation.

I 2020 - Egger, Radu - A mass-lumped mixed finite element method for
Maxwell’s equations

I 2021 - Egger, Radu - A second order finite element method with mass
lumping for wave equations in H(div).

I 2021 - Egger, Radu - A Second-Order Finite Element Method with Mass
Lumping for Maxwell’s Equations on Tetrahedra.

Thank you for your attention!
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Extension to even higher orders

We look for Gauss-Lobatto type quadrature rules !
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